47 research outputs found
Bistable Helmholtz bright solitons in saturable materials
We present, to the best of our knowledge, the first exact analytical solitons of a nonlinear Helmholtz equation with a saturable refractive-index model. These new two-dimensional spatial solitons have a bistable characteristic in some parameter regimes, and they capture oblique (arbitrary-angle) beam propagation in both the forward and backward directions. New conservation laws are reported, and the classic paraxial solution is recovered in an appropriate multiple limit. Analysis and simulations examine the stability of both solution branches, and stationary Helmholtz solitons are found to emerge from a range of perturbed input beams
Identification of Cellular Pathogenicity Markers for SIL1 Mutations Linked to Marinesco-Sjögren Syndrome.
Background and objective: Recessive mutations in the SIL1 gene cause Marinesco-Sjögren syndrome (MSS), a rare neuropediatric disorder. MSS-patients typically present with congenital cataracts, intellectual disability, cerebellar ataxia and progressive vacuolar myopathy. However, atypical clinical presentations associated with SIL1 mutations have been described over the last years; compound heterozygosity of SIL1 missense mutations even resulted in a phenotype not fulfilling the clinical diagnostic criteria of MSS. Thus, a read-out system to evaluate reliably the pathogenicity of amino acid changes in SIL1 is needed. Here, we aim to provide suitable cellular biomarkers enabling the robust evaluation of pathogenicity of SIL1 mutations. Methods: Five SIL1 variants including one polymorphism (p.K132Q), three known pathogenic mutations (p.V231_I232del, p.G312R, and p.L457P) and one ambiguous missense variant (p.R92W) were studied along with the wild-type proteins in Hek293 in vitro models by cell biological assays, immunoprecipitation, immunoblotting, and immunofluorescence as well as electron microscopy. Moreover, the SIL1-interactomes were interrogated by tandem-affinity-purification and subsequent mass spectrometry. Results: Our combined studies confirmed the pathogenicity of p.V231_I232del, p.G312R, and p.L457P by showing instability of the proteins as well as tendency to form aggregates. This observation is in line with altered structure of the ER-Golgi system and vacuole formation upon expression of these pathogenic SIL1-mutants as well as the presence of oxidative or ER-stress. Reduced cellular fitness along with abnormal mitochondrial architecture could also be observed. Notably, both the polymorphic p.K132Q and the ambiguous p.R92W variants did not elicit such alterations. Study of the SIL1-interactome identified POC1A as a novel binding partner of wild-type SIL1; the interaction is disrupted upon the presence of pathogenic mutants but not influenced by the presence of benign variants. Disrupted SIL1-POC1A interaction is associated with centrosome disintegration. Conclusions: We developed a combination of cellular outcome measures to evaluate the pathogenicity of SIL1 variants in suitable in vitro models and demonstrated that the p. R92W missense variant is a polymorphism rather than a pathogenic mutation leading to MSS
Multicenter evaluation of blood-based biomarkers for the detection of endometriosis and adenomyosis: A prospective non-interventional study.
OBJECTIVE
To evaluate blood-based biomarkers to detect endometriosis and/or adenomyosis across nine European centers (June 2014-April 2018).
METHODS
This prospective, non-interventional study assessed the diagnostic accuracy of 54 blood-based biomarker immunoassays in samples from 919 women (aged 18-45âyears) with suspicion of endometriosis and/or adenomyosis versus symptomatic controls. Endometriosis was stratified by revised American Society for Reproductive Medicine stage. Symptomatic controls were "pathologic symptomatic controls" or "pathology-free symptomatic controls". The main outcome measure was receiver operating characteristic-area under the curve (ROC-AUC) and Wilcoxon P values corrected for multiple testing (q values).
RESULTS
CA-125 performed best in "all endometriosis cases" versus "all symptomatic controls" (AUC 0.645, 95% confidence interval [CI] 0.600-0.690, qâ<â0.001) and increased (Pâ<â0.001) with disease stage. In "all endometriosis cases" versus "pathology-free symptomatic controls", S100-A12 performed best (AUC 0.692, 95% CI 0.614-0.769, qâ=â0.001) followed by CA-125 (AUC 0.649, 95% CI 0.569-0.729, qâ=â0.021). In "adenomyosis only cases" versus "symptomatic controls" or "pathology-free symptomatic controls", respectively, the top-performing biomarkers were sFRP-4 (AUC 0.615, 95% CI 0.551-0.678, qâ=â0.045) and S100-A12 (AUC 0.701, 95% CI 0.611-0.792, qâ=â0.004).
CONCLUSION
This study concluded that no biomarkers tested could diagnose or rule out endometriosis/adenomyosis with high certainty
Genetic and environmental variation in educational attainment : an individual-based analysis of 28 twin cohorts
We investigated the heritability of educational attainment and how it differed between birth cohorts and cultural-geographic regions. A classical twin design was applied to pooled data from 28 cohorts representing 16 countries and including 193,518 twins with information on educational attainment at 25 years of age or older. Genetic factors explained the major part of individual differences in educational attainment (heritability: a(2)=0.43; 0.41-0.44), but also environmental variation shared by co-twins was substantial (c(2)=0.31; 0.30-0.33). The proportions of educational variation explained by genetic and shared environmental factors did not differ between Europe, North America and Australia, and East Asia. When restricted to twins 30 years or older to confirm finalized education, the heritability was higher in the older cohorts born in 1900-1949 (a(2)=0.44; 0.41-0.46) than in the later cohorts born in 1950-1989 (a(2)=0.38; 0.36-0.40), with a corresponding lower influence of common environmental factors (c(2)=0.31; 0.29-0.33 and c(2)=0.34; 0.32-0.36, respectively). In conclusion, both genetic and environmental factors shared by co-twins have an important influence on individual differences in educational attainment. The effect of genetic factors on educational attainment has decreased from the cohorts born before to those born after the 1950s.Peer reviewe
Coupling nonâinvasive imaging and reactive transport modeling to investigate water and oxygen dynamics in the root zone
Abstract Oxygen (O2) availability in soils is vital for plant growth and productivity. The transport and consumption of O2 in the root zone is closely linked to soil moisture content, the spatial distribution of roots, as well as structure and heterogeneity of the surrounding soil. In this study, we measure threeâdimensional root system architecture and the spatiotemporal dynamics of soil moisture (Ξ) and O2 concentrations in the root zone of maize (Zea mays) via nonâinvasive imaging, and then construct and parameterize a reactive transport model based on the experimental data. The combination of three nonâinvasive imaging methods allowed for a direct comparison of simulation results with observations at high spatial and temporal resolution. In three different modeling scenarios, we investigated how the results obtained for different levels of conceptual complexity in the model were able to match measured Ξ and O2 concentration patterns. We found that the modeling scenario that considers heterogeneous soil structure and spatial variability of hydraulic parameters (permeability, porosity, and van Genuchten α and n), better reproduced the measured Ξ and O2 patterns relative to a simple model with a homogenous soil domain. The results from our combined imaging and modeling analysis reveal that experimental O2 and water dynamics can be reproduced quantitatively in a reactive transport model, and that O2 and water dynamics are best characterized when conditions unique to the specific system beyond the distribution of roots, such as soil structure and its effect on water saturation and macroscopic gas transport pathways, are considered