53 research outputs found
Effects of municipal solid waste- and sewage sludge-compost-based growing media on the yield and heavy metal content of four lettuce cultivars
Compost has been recently suggested as an alternative to peat for the preparation of growing substrates in soilless cultivation systems. However, some physico-chemical properties of compost may reduce plant performance and endanger the quality of productions, in particular for possible heavy metal accumulation in edible parts. This study aims at evaluating the suitability of a municipal solid waste compost (MSWC) and a sewage sludge compost (SSC) as components of growing media for the soilless cultivation of lettuce (Lactuca sativa L.). Heavy metal content of SSC complied with legislation limits but, in MSWC, it exceeded (Cu, Pb) or was very close (Cd, Zn) to safe limits. A greenhouse experiment was carried out by cultivating four lettuce cultivars (“Maximus,” “Murai,” “Patagonia,” and “Aleppo”) in pots containing a mixture of MSWC and perlite (MSWC + P), SSC and perlite (SSC + P), or peat and perlite (peat + P), the latter used as control. Plant biometric parameters measured after 72 days of growth revealed that the yield of plants cultivated on SSC + P was similar to control plants, independently of the cultivar. Conversely, MSWC + P suppressed in general the biomass production, especially for Murai and Patagonia cultivars. Compared to peat + P, both compost-based substrates reduced the leaf accumulation of heavy metals, with a major effect in Maximus plants. The levels of Cd and Pb in the edible part were always below the safe limits imposed by European regulation. Therefore, risks of heavy metal intake in food chain associated with the replacement of peat with compost in the growing media are negligible, even when a compost with a significant amount of heavy metals is used. Besides compost quality monitoring, also an appropriate varietal choice is crucial to obtain good yields and safe products
Cover crop for a sustainable viticulture: Effects on soil properties and table grape production
Cover crops are increasingly adopted in viticulture to enhance soil quality and balance the vegetative and reproductive growth of vines. Nevertheless, this sustainable practice has been only recently used for table grape viticulture, with results often contrasting. The aim of this study was to assess the effect of a fescue (Festuca arundinacea Schreb.) cover crop on soil quality, yield, and grape qualitative parameters in a table grape vineyard (cv "Italia") located in southern Italy, comparing results with the conventional tillage. Soil organic carbon (C), total nitrogen (N), microbial biomass C (MBC), β-glucosidase (BGLU) and alkaline phosphomonoesterase (APME) activities were assessed during three growing seasons (2012-2014) and three phenological stages. The trend of soil chemical and microbiological properties was jointly influenced by the soil management system, growing season and phenological stage. Compared to conventional tillage, cover crops increased, on average, soil organic C, total N, MBC, BGLU and APME by 136%, 93%, 112%, 100% and 62%, respectively. Slight or no effects of cover crops were observed on grape quality and yield, except for 2012 (the driest season), when a yield reduction occurred. This study reveals that cover crops strongly enhance soil quality in the short-term, with potential advantages for grape production in the long-term
- …