2 research outputs found

    Wear resistant solid lubricating coatings via compression molding and thermal spraying technologies

    Get PDF
    This work combines two industrially friendly processing methods in order to create wear resistant and solid-lubricating composite coatings potentially suitable for high load applications. Layered composite coatings were fabricated over wrought stainless steel 444 (SS444) by compression molding a mixture of solid lubricant polymer, polytetrafluoroethylene (PTFE, 80 wt%), and wear resistant polymer, polyimide (PI, 20 wt%), onto iron aluminide (Fe3Al) thermal spray coatings without the need of either primers or adhesives. The fabrication process consisted of three main steps: deposition of the Fe3Al thermal spray coating onto a SS444 substrate and transfer into a metal mold; transfer, compress, and sinter mixed polymeric powder onto the thermal spray coating; and finally, sample cooling to room temperature. This method takes advantage of the high surface roughness of thermal spray coatings, which increases mechanical adhesion of slippery PTFE to the underlying metallic material. Coatings were produced with and without a small amount of graphite (5 wt%) to analyze its impact on sliding and wear properties. Unlike current coating technologies, the thickness of the coatings presented herein can be easily and quickly tailored by varying the amount of polymer powder added to the mold prior to compression or by grinding after fabrication. We produced and analyzed coatings ~1.3 mm in total thickness that portray coefficient of frictions ~0.1, similar to pure PTFE. The calculated wear rates for both coatings with and without graphite are an order of magnitude lower than what has been previously reported for coatings of similar composition. The influence of graphite on wear properties was found to be minimal due to the high content of self-lubricating PTFE yet can act as a way to lower material costs and increase the coatings load capacity

    Corrosion of One-Step Superhydrophobic Stainless-Steel Thermal Spray Coatings

    Get PDF
    As most superhydrophobic coatings are made of soft materials, the need for harder, more robust films is evident in applications where erosional degradation is of concern. The work herein describes a methodology to produce superhydrophobic stainless-steel thermal spray coatings using the high-velocity oxygen fuel technique. Due to the use of a kerosene fuel source, a carbon-rich film is formed on the surface of the thermal spray coatings, lowering the surface energy of the high-energy metallic substrates. The thermal spray process generates a hierarchical micro-/sub-micro-structure that is needed to sustain superhydrophobicity. The effect of spray parameters such as particle velocity and temperature on the coating’s hydrophobicity state was explored, and a high particle velocity was shown to cause superhydrophobic characteristics. The coatings were characterized using scanning electron microscopy, profilometry, X-ray photoelectron spectroscopy, static water contact angle measurements, water droplet roll-off measurements, and water droplet bouncing tests. The corrosion behavior of the coatings was studied using potentiodynamic polarization measurements in order to correlate water repellency with corrosion resistance; however, all coatings demonstrated active corrosion without passivation. This study describes an interesting phenomenon where superhydrophobicity does not guarantee corrosion resistance and discusses alternative applications for such materials
    corecore