596 research outputs found
Diagnosis and ultrasound-guided retrieval of a vaginal foreign body in a dog and a cat
In this case report, the diagnosis and ultrasound-guided retrieval of an intravaginal grass awn in a dog and a cat are described. The dog was presented with chronic vaginal discharge for over two years. The cat was presented for acute lethargy and bloody vaginal discharge and a two-week history of a perivulvar leakage. Ultrasonographic diagnosis included the visualization of a linear, hyperechoic and spindle-shaped structure and mild thickness of the vagina. The grass awns were successfully retrieved non-invasively, under general anesthesia using ultrasound-guided Hartmann forceps inserted into the vagina. Ultrasound-guided grass awn retrieval from the vagina appears to be a safe and inexpensive procedure
Biodiversity in drinking water distribution systems:a brief review
In drinking water distribution systems, three groups of living organisms are usually found in the biofilm and circulating water: heterotrophic bacteria, free-living protozoa, and macro-invertebrates. Indirect evidence suggests that protozoa grazing in distribution systems can partially eliminate biomass production and accidental microbiological pollution. This paper examines the biodiversit in drinking water distribution systems
Room temperature spin filtering in epitaxial cobalt-ferrite tunnel barriers
We report direct experimental evidence of room temperature spin filtering in
magnetic tunnel junctions (MTJs) containing CoFe2O4 tunnel barriers via
tunneling magnetoresistance (TMR) measurements.
Pt(111)/CoFe2O4(111)/gamma-Al2O3(111)/Co(0001) fully epitaxial MTJs were grown
in order to obtain a high quality system, capable of functioning at room
temperature. Spin polarized transport measurements reveal significant TMR
values of -18% at 2 K and -3% at 290 K. In addition, the TMR ratio follows a
unique bias voltage dependence that has been theoretically predicted to be the
signature of spin filtering in MTJs containing magnetic barriers. CoFe2O4
tunnel barriers therefore provide a model system to investigate spin filtering
in a wide range of temperatures.Comment: 6 pages, 3 figure
Exchange bias in Co/CoO core-shell nanowires: Role of the antiferromagnetic superparamagnetic fluctuations
The magnetic properties of Co (=15 nm, =130nm) nanowires are reported.
In oxidized wires, we measure large exchange bias fields of the order of 0.1 T
below T ~ 100 K. The onset of the exchange bias, between the ferromagnetic core
and the anti-ferromagnetic CoO shell, is accompanied by a coercivity drop of
0.2 T which leads to a minimum in coercivity at K. Magnetization
relaxation measurements show a temperature dependence of the magnetic viscosity
S which is consistent with a volume distribution of the CoO grains at the
surface. We propose that the superparamagnetic fluctuations of the
anti-ferromagnetic CoO shell play a key role in the flipping of the nanowire
magnetization and explain the coercivity drop. This is supported by
micromagnetic simulations. This behavior is specific to the geometry of a 1D
system which possesses a large shape anisotropy and was not previously observed
in 0D (spheres) or 2D (thin films) systems which have a high degree of symmetry
and low coercivities. This study underlines the importance of the AFM
super-paramagnetic fluctuations in the exchange bias mechanism.Comment: 10 pages, 10 figures, submitted to Phys. Rev.
The use of Lorentz microscopy for the determination of magnetic reversal mechanism of exchange-biased Co30Fe70/NiMn bilayer
Lorentz transmission electron microscopy (LTEM) combined with in-situ
magnetizing experiments is a powerful tool for the investigation of the
magnetization of the reversal process at the micron scale. We have implemented
this tool on a conventional transmission electron microscope (TEM) to study the
exchange anisotropy of a polycrystalline Co35Fe65/NiMn bilayer.
Semi-quantitative maps of the magnetic induction were obtained at different
field values by the differential phase contrast (DPC) technique adapted for a
TEM (SIDPC). The hysteresis loop of the bilayer has been calculated from the
relative intensity of magnetic maps. The curve shows the appearance of an
exchange-bias field reveals with two distinct reversal modes of the
magnetization: the first path corresponds to a reversal by wall propagation
when the applied field is parallel to the anisotropy direction whereas the
second is a reversal by coherent rotation of magnetic moments when the field is
applied antiparallel to unidirectional anisotropy direction
Incidence sérologique des anticorps anti-brucelliques chez les animaux domestiques de l'homme en Iran
cf. fichier PDF de l'article
Experimental application of sum rules for electron energy loss magnetic chiral dichroism
We present a derivation of the orbital and spin sum rules for magnetic
circular dichroic spectra measured by electron energy loss spectroscopy in a
transmission electron microscope. These sum rules are obtained from the
differential cross section calculated for symmetric positions in the
diffraction pattern. Orbital and spin magnetic moments are expressed explicitly
in terms of experimental spectra and dynamical diffraction coefficients. We
estimate the ratio of spin to orbital magnetic moments and discuss first
experimental results for the Fe L_{2,3} edge.Comment: 11 pages, 2 figure
- âŠ