10 research outputs found
Recommended from our members
GATEKEEPER’s Strategy for the Multinational Large-Scale Piloting of an eHealth Platform: Tutorial on How to Identify Relevant Settings and Use Cases
Background:
The World Health Organization’s strategy toward healthy aging fosters person-centered integrated care sustained by eHealth systems. However, there is a need for standardized frameworks or platforms accommodating and interconnecting multiple of these systems while ensuring secure, relevant, fair, trust-based data sharing and use. The H2020 project GATEKEEPER aims to implement and test an open-source, European, standard-based, interoperable, and secure framework serving broad populations of aging citizens with heterogeneous health needs.
Objective:
We aim to describe the rationale for the selection of an optimal group of settings for the multinational large-scale piloting of the GATEKEEPER platform.
Methods:
The selection of implementation sites and reference use cases (RUCs) was based on the adoption of a double stratification pyramid reflecting the overall health of target populations and the intensity of proposed interventions; the identification of a principles guiding implementation site selection; and the elaboration of guidelines for RUC selection, ensuring clinical relevance and scientific excellence while covering the whole spectrum of citizen complexities and intervention intensities.
Results:
Seven European countries were selected, covering Europe’s geographical and socioeconomic heterogeneity: Cyprus, Germany, Greece, Italy, Poland, Spain, and the United Kingdom. These were complemented by the following 3 Asian pilots: Hong Kong, Singapore, and Taiwan. Implementation sites consisted of local ecosystems, including health care organizations and partners from industry, civil society, academia, and government, prioritizing the highly rated European Innovation Partnership on Active and Healthy Aging reference sites. RUCs covered the whole spectrum of chronic diseases, citizen complexities, and intervention intensities while privileging clinical relevance and scientific rigor. These included lifestyle-related early detection and interventions, using artificial intelligence–based digital coaches to promote healthy lifestyle and delay the onset or worsening of chronic diseases in healthy citizens; chronic obstructive pulmonary disease and heart failure decompensations management, proposing integrated care management based on advanced wearable monitoring and machine learning (ML) to predict decompensations; management of glycemic status in diabetes mellitus, based on beat to beat monitoring and short-term ML-based prediction of glycemic dynamics; treatment decision support systems for Parkinson disease, continuously monitoring motor and nonmotor complications to trigger enhanced treatment strategies; primary and secondary stroke prevention, using a coaching app and educational simulations with virtual and augmented reality; management of multimorbid older patients or patients with cancer, exploring novel chronic care models based on digital coaching, and advanced monitoring and ML; high blood pressure management, with ML-based predictions based on different intensities of monitoring through self-managed apps; and COVID-19 management, with integrated management tools limiting physical contact among actors.
Conclusions:
This paper provides a methodology for selecting adequate settings for the large-scale piloting of eHealth frameworks and exemplifies with the decisions taken in GATEKEEPER the current views of the WHO and European Commission while moving forward toward a European Data Space
Correction: A multimodal deep learning architecture for predicting interstitial glucose for effective type 2 diabetes management
A multimodal deep learning architecture for predicting interstitial glucose for effective type 2 diabetes management
Abstract The accurate prediction of blood glucose is critical for the effective management of diabetes. Modern continuous glucose monitoring (CGM) technology enables real-time acquisition of interstitial glucose concentrations, which can be calibrated against blood glucose measurements. However, a key challenge in the effective management of type 2 diabetes lies in forecasting critical events driven by glucose variability. While recent advances in deep learning enable modeling of temporal patterns in glucose fluctuations, most of the existing methods rely on unimodal inputs and fail to account for individual physiological differences that influence interstitial glucose dynamics. These limitations highlight the need for multimodal approaches that integrate additional personalized physiological information. One of the primary reasons for multimodal approaches not being widely studied in this field is the bottleneck associated with the availability of subjects’ health records. In this paper, we propose a multimodal approach trained on sequences of CGM values and enriched with physiological context derived from health records of 40 individuals with type 2 diabetes. The CGM time series were processed using a stacked Convolutional Neural Network (CNN) and a Bidirectional Long Short-Term Memory (BiLSTM) network followed by an attention mechanism. The BiLSTM learned long-term temporal dependencies, while the CNN captured local sequential features. Physiological heterogeneity was incorporated through a separate pipeline of neural networks that processed baseline health records and was later fused with the CGM modeling stream. To validate our model, we utilized CGM values of 30 min sampled with a moving window of 5 min to predict the CGM values with a prediction horizon of (a) 15 min, (b) 30 min, and (c) 60 min. We achieved the multimodal architecture prediction results with Mean Absolute Point Error (MAPE) between 14 and 24 mg/dL, 19–22 mg/dL, 25–26 mg/dL in case of Menarini sensor and 6–11 mg/dL, 9–14 mg/dL, 12–18 mg/dL in case of Abbot sensor for 15, 30 and 60 min prediction horizon respectively. The results suggested that the proposed multimodal model achieved higher prediction accuracy compared to unimodal approaches; with upto 96.7% prediction accuracy; supporting its potential as a generalizable solution for interstitial glucose prediction and personalized management in the type 2 diabetes population
