122 research outputs found

    Numerical simulations of the kappa-mechanism with convection

    Full text link
    A strong coupling between convection and pulsations is known to play a major role in the disappearance of unstable modes close to the red edge of the classical Cepheid instability strip. As mean-field models of time-dependent convection rely on weakly-constrained parameters, we tackle this problem by the means of 2-D Direct Numerical Simulations (DNS) of kappa-mechanism with convection. Using a linear stability analysis, we first determine the physical conditions favourable to the kappa-mechanism to occur inside a purely-radiative layer. Both the instability strips and the nonlinear saturation of unstable modes are then confirmed by the corresponding DNS. We next present the new simulations with convection, where a convective zone and the driving region overlap. The coupling between the convective motions and acoustic modes is then addressed by using projections onto an acoustic subspace.Comment: 5 pages, 6 figures, accepted for publication in Astrophysics and Space Science, HELAS workshop (Rome june 2009

    Clinical pharmacokinetics and dose recommendations for posaconazole gastroresistant tablets in children with cystic fibrosis.

    Get PDF
    Objectives: To investigate the population pharmacokinetics of posaconazole gastroresistant tablets in children with cystic fibrosis (CF) and perform simulations to recommend optimal doses. Patients and methods: Children from a paediatric CF centre who had received posaconazole tablets and underwent therapeutic drug monitoring were identified from pharmacy records. Relevant clinical data were collated from case notes and electronic patient records and used to develop an allometrically scaled population pharmacokinetic model. A stepwise covariate model-building exercise evaluated the influence of interacting medicines and liver function. Results: One hundred posaconazole serum concentrations were collected from 37 children with a median age of 14 years (range 7–17). Posaconazole pharmacokinetics were adequately described by a one-compartment model with inter-individual variability on clearance. Dose simulations demonstrated a 77%–83% probability of attaining a trough target of 1 mg/L with a dose of 300 mg every 12 h for two doses then 300 mg once daily (OD) in children aged 6–11 years; and 86%–88% with a dose of 400 mg every 12 h for two doses then 400 mg OD in adolescents aged 12–17 years. This dose scheme also yielded a 90% probability of achieving an AUC of 30 mg·h/L. AUC and trough concentration were highly correlated (r2 = 0.98). Simulations showed that trough concentrations of >0.75 mg/L would exceed an AUC of 30 mg·h/L in 90% of patients. Conclusions: A starting dose of 300 mg OD in those aged 6–11 years and 400 mg OD in those aged 12–17 years (following loading doses) yields a 90% probability of attaining an AUC of 30 mg·h/L

    Velocity Amplitudes in Global Convection Simulations: The Role of the Prandtl Number and Near-Surface Driving

    Full text link
    Several lines of evidence suggest that the velocity amplitude in global simulations of solar convection, U, may be systematically over-estimated. Motivated by these recent results, we explore the factors that determine U and we consider how these might scale to solar parameter regimes. To this end, we decrease the thermal diffusivity κ\kappa along two paths in parameter space. If the kinematic viscosity ν\nu is decreased proportionally with κ\kappa (fixing the Prandtl number Pr=ν/κP_r = \nu/\kappa), we find that U increases but asymptotes toward a constant value, as found by Featherstone & Hindman (2016). However, if ν\nu is held fixed while decreasing κ\kappa (increasing PrP_r), we find that U systematically decreases. We attribute this to an enhancement of the thermal content of downflow plumes, which allows them to carry the solar luminosity with slower flow speeds. We contrast this with the case of Rayleigh-Benard convection which is not subject to this luminosity constraint. This dramatic difference in behavior for the two paths in parameter space (fixed PrP_r or fixed ν\nu) persists whether the heat transport by unresolved, near-surface convection is modeled as a thermal conduction or as a fixed flux. The results suggest that if solar convection can operate in a high-PrP_r regime, then this might effectively limit the velocity amplitude. Small-scale magnetism is a possible source of enhanced viscosity that may serve to achieve this high-PrP_r regime.Comment: 34 Pages, 8 Figures, submitted to a special issue of "Advances in Space Research" on "Solar Dynamo Frontiers

    Variation in target attainment of β-lactam antibiotic dosing between international pediatric formularies

    Get PDF
    As antimicrobial susceptibility of common bacterial pathogens decreases, ensuring optimal dosing may preserve the use of older antibiotics in order to limit the spread of resistance to newer agents. β-lactams represent the most widely prescribed antibiotic class, yet most were licensed prior to legislation changes mandating their study in children. As a result, significant heterogeneity persists in the pediatric doses used globally, along with quality of evidence used to inform dosing. This review summarizes dose recommendations from the major paediatric reference sources and tries to answer the question: does β-lactam dose heterogeneity matter? Does it impact on pharmacodynamic (PD) target attainment? For three important severe clinical infections - pneumonia, sepsis and meningitis - pharmacokinetic (PK) models were identified for common β-lactam antibiotics. Real-world demographics were derived from three multi-center point prevalence surveys. Simulation results were compared with minimum inhibitory concentration (MIC) distributions, to inform appropriateness of recommended doses in targeted and empiric treatment. Whilst cephalosporin dose regimens are largely adequate for target attainment, they also pose most risk of neurotoxicity. Our review highlights aminopenicillin, piperacillin and meropenem doses as potentially requiring review/optimisation in order to preserve the use of these agents in future

    Continuous infusion of physostigmine in patients with perioperative septic shock: A pharmacokinetic/pharmacodynamic study with population pharmacokinetic modeling

    Get PDF
    Background In the context of the cholinergic anti-inflammatory pathway, the clinical trial Anticholium® per Se (EudraCT Number: 2012-001650-26, ClinicalTrials.gov NCT03013322) addressed the possibility of taking adjunctive physostigmine salicylate treatment in septic shock from bench to bedside. Pharmacokinetics (PK) are likely altered in critically ill patients; data on physostigmine PK and target concentrations are sparse, particularly for continuous infusion. Our objective was to build a population PK (popPK) model for physostigmine, and further evaluate pharmacodynamics (PD) and concentration-response relationship in this setting. Methods In the randomized, double-blind, placebo-controlled trial, 20 patients with perioperative septic shock either received an initial dose of 0.04 mg/kg physostigmine salicylate, followed by continuous infusion of 1 mg/h for up to 120 h, or equivalent volumes of 0.9% sodium chloride (placebo group). Physostigmine plasma concentrations and acetylcholinesterase (AChE) activity were measured; concentration-response associations were evaluated, and popPK and PD modeling was performed with NONMEM. Results Steady state physostigmine plasma concentrations reached 7.60 ± 2.81 ng/mL (mean ± standard deviation [SD]). PK was best described by a two-compartment model with linear clearance. Significant covariate effects were detected for body weight and age on clearance, as well as a high inter-individual variability of the central volume of distribution. AChE activity was significantly reduced to 30.5%–50.6% of baseline activity during physostigmine salicylate infusion. A sigmoidal direct effect PD model best described enzyme inhibition by physostigmine, with an estimated half maximal effective concentration (EC50) of 5.99 ng/mL. Conclusions PK of physostigmine in patients with septic shock displayed substantial inter-individual variability with body weight and age influencing the clearance. Physostigmine inhibited AChE activity with a sigmoidal concentration-response effect

    Pharmacokinetics of Micafungin in Critically Ill Patients

    Get PDF
    We investigated covariates of pharmacokinetics of micafungin in critically ill patients. After application of micafungin, plasma samples were collected. Non-linear mixed effects modelling (NONMEM 7.3) was used to develop the pharmacokinetic model. Using this model, the adequacy of a fixed 100 mg dosing regimen was evaluated in the study cohort. A two-compartment model with linear elimination was found to describe the obtained data. SOFA score was identified as a significant covariate on both clearance and central volume of distribution, respectively. Patients in highly critical condition, represented by a SOFA above 10 showed a 30.8% lower central volume of distribution than the less critically ill patients. For patients with bilirubin levels above 4 mg/dl, clearance was decreased by 21.1%. Renal replacement therapy (RRT) did not influence micafungin clearance or the volumes of distribution. In a posthoc evaluation of the modeled population, 100 mg micafungin was suitable when assessing the PKPD targets (AUC/MIC) for C. albicans and C. glabrata, with insufficient target attainment for C. parapsilosis. Micafungin pharmacokinetics appear not to be influenced by the status of RRT. A dose of 100 mg micafungin is suitable for infections with C. albicans and C. glabrata in critically ill patients

    GAPPS (Grading and Assessment of Pharmacokinetic-Pharmacodynamic Studies) a critical appraisal system for antimicrobial PKPD studies - development and application in pediatric antibiotic studies

    Get PDF
    Introduction: There are limited data on optimal dosing of antibiotics in different age groups for neonates and children. Clinicians usually consult pediatric formularies or online databases for dose selection, but these have variable recommendations, are usually based on expert opinion and are not graded based on the existing pharmacokinetic-pharmacodynamic (PKPD) studies. We describe here a potential new tool that could be used to grade the strength of evidence emanating from PKPD studies. Areas covered: A scoring system was developed (GAPPS tool) to quantify the strength of each PK assessment and rate the studies quality in already published articles. GAPPS was evaluated by applying it to pediatric PKPD studies of antibiotics from the 2019 Essential Medicines List for children (EMLC), identified through a search of PubMed. Expert opinion: Evidence for most antibiotic dose selection decisions was generally weak, coming from individual PK studies and lacked PKPD modeling and simulations. However, the quality of evidence appears to have improved over the last two decades. Incorporating a formal grading system, such as GAPPS, into formulary development will provide a transparent tool to support decision-making in clinical practice and guideline development, and guide PKPD authors on study designs most likely to influence guidelines

    Pharmacodynamics of Posaconazole in Experimental Invasive Pulmonary Aspergillosis: Utility of Serum Galactomannan as a Dynamic Endpoint of Antifungal Efficacy

    Get PDF
    Background. Aspergillus galactomannan antigenemia is an accepted tool for the diagnosis of invasive pulmonary aspergillosis (IPA) in neutropenic patients. Little is known, however, about the utility of this biomarker to assess the efficacy of antifungal therapies. / Methods. The pharmacokinetics and pharmacodynamics (PK/PD) of posaconazole in treatment and prophylaxis were investigated in the persistently neutropenic rabbit model of Aspergillus fumigatus IPA at doses between 2 and 20 mg/kg and day. Sparse plasma sampling was used to obtain PK data at steady state, and the serum galactomannan index (GMI), as a dynamic endpoint of antifungal response, was obtained every other day in addition to conventional outcome parameters including survival and fungal tissue burden. Nonparametric PK/PD model building was performed using the Pmetrics Package in R. / Results. A one-compartment model with linear elimination best described the PK of posaconazole. The PD effect of posaconazole exposure in plasma on the GMI in serum was best described by a dynamic Hill-functions reflecting growth and kill of the fungus. Through calculations of the AUC0-24h at steady state, the exposure-response relationship between posaconazole and the GMI for treatment followed a sigmoidal function with an asymptote forming above an AUC0-24h of 30 mg*h/L. All prophylactic doses were able to control the fungal burden. / Conclusions. A nonparametric population PK/PD model adequately described the effect of posaconazole in prophylaxis and treatment of experimental IPA. An AUC0-24h greater than 30 mg*h/L was associated with adequate resolution of the GMI, which is well in support of previously suggested exposure-response relationships in humans

    An automated approach to identify scientific publications reporting pharmacokinetic parameters [version 1; peer review: awaiting peer review]

    Get PDF
    Pharmacokinetic (PK) predictions of new chemical entities are aided by prior knowledge from other compounds. The development of robust algorithms that improve preclinical and clinical phases of drug development remains constrained by the need to search, curate and standardise PK information across the constantly-growing scientific literature. The lack of centralised, up-to-date and comprehensive repositories of PK data represents a significant limitation in the drug development pipeline.In this work, we propose a machine learning approach to automatically identify and characterise scientific publications reporting PK parameters from in vivo data, providing a centralised repository of PK literature. A dataset of 4,792 PubMed publications was labelled by field experts depending on whether in vivo PK parameters were estimated in the study. Different classification pipelines were compared using a bootstrap approach and the best-performing architecture was used to develop a comprehensive and automatically-updated repository of PK publications. The best-performing architecture encoded documents using unigram features and mean pooling of BioBERT embeddings obtaining an F1 score of 83.8% on the test set. The pipeline retrieved over 121K PubMed publications in which in vivo PK parameters were estimated and it was scheduled to perform weekly updates on newly published articles. All the relevant documents were released through a publicly available web interface (https://app.pkpdai.com) and characterised by the drugs, species and conditions mentioned in the abstract, to facilitate the subsequent search of relevant PK data. This automated, open-access repository can be used to accelerate the search and comparison of PK results, curate ADME datasets, and facilitate subsequent text mining tasks in the PK domain.</ns4:p
    • …
    corecore