92 research outputs found
Helium Ion Microscopy
Helium Ion Microcopy (HIM) based on Gas Field Ion Sources (GFIS) represents a
new ultra high resolution microscopy and nano-fabrication technique. It is an
enabling technology that not only provides imagery of conducting as well as
uncoated insulating nano-structures but also allows to create these features.
The latter can be achieved using resists or material removal due to sputtering.
The close to free-form sculpting of structures over several length scales has
been made possible by the extension of the method to other gases such as Neon.
A brief introduction of the underlying physics as well as a broad review of the
applicability of the method is presented in this review.Comment: Revised versio
Dynamics and Energetics of Ge(001) Dimers
The dynamic behavior of surface dimers on Ge(001) has been studied by positioning the tip of a scanning tunneling microscope over single flip-flopping dimers and measuring the tunneling current as a function of time. We observe that not just symmetric, but also asymmetric appearing dimers exhibit flip-flop motion. The dynamics of flip-flopping dimers can be used to sensitively gauge the local potential landscape of the surface. Through a spatial and time-resolved measurement of the flip-flop frequency of the dimers, local strain fields near surface defects can be accurately probed
Quantum Size Effect Driven Structure Modifications of Bi Films on Ni(111)\ud
The quantum-size effect (QSE) driven growth of Bi film structures on Ni(111) was studied in situ using low energy electron microscopy and selective area low energy electron diffraction (μLEED). Domains with a (3×3), [3/1 -1/2], and (7×7) film structure are found with a height of 3, 5, and 7 atomic layers, respectively. A comparison of I/V-μLEED curves with tensor LEED calculations shows perfectly accommodated Fermi wavelengths, indicative that not only the quantized height, but also the film structure is driven by QSE.\ud
\u
Anomalous Decay of Electronically Stabilized Lead Mesas on Ni(111)\ud
With their low surface free energy, lead films tend to wet surfaces. However, quantum size effects (QSE) often lead to islands with distinct preferred heights. We study thin lead films on Ni(111) using low energy electron microscopy and selected area low energy electron diffraction. Indeed, the grown lead mesas show distinct evidence for QSE’s. At about 526 K metastable mesas reshape into hemispheres within milliseconds, driven by a huge reduction in interfacial free energy. The underlying diffusion rate is many orders of magnitude faster than expected for lead on bulk lea
Measurement of the sputter yield after mild ion erosion of a pristine Cu(001) surface
Using the STM technique we have determined the sputter yield on a pristine Cu(001) surface after mild (fluence less than 0.044 ions per surface atom) bombardment of the pristine surface with 800 eV Ar+ions at normal incidence. The experiments have been performed at substrate temperatures ranging from 200 to 350 K. Making use of the positional correlation of adatoms and surface vacancies, at 200 K and 325 K, we concluded that about 1/3 of the surface adatoms originate from interstitials arriving at the surface and they give a direct indication of the buried bulk vacancies. A careful analysis of the different areas for surface vacancies and adatom then allowed a quantitative evaluation of the sputter yield at 1.2 Cu atoms per 800 eV Ar+ io
Vacancy-mediated diffusion of Co atoms embedded in Cu(001)
The diffusion of Co atoms in the Cu(001) surface has been studied using Scanning Tunneling Microscopy (STM). Like other impurities in the Cu(001) surface, the diffusion of Co is mediated by single surface vacancies. STM images reveal that diffusion of the embedded atoms takes place through multi-atom jumps separated by long time intervals, which is characteristic for this type of diffusion. The jump length and frequency are measured to establish the nature of the interaction between surface vacancies and the embedded Co atoms and to extract the relevant formation and diffusion energies
Size fluctuations of near critical and Gibbs free energy for nucleation of BDA on Cu(001)
We present a low-energy electron microscopy study of nucleation and growth of BDA on Cu(001) at low supersaturation. At sufficiently high coverage, a dilute BDA phase coexists with c(8×8) crystallites. The real-time microscopic information allows a direct visualization of near-critical nuclei, determination of the supersaturation and the line tension of the crystallites, and, thus, derivation of the Gibbs free energy for nucleation. The resulting critical nucleus size nicely agrees with the measured value. Nuclei up to 4-6 times larger still decay with finite probability, urging reconsideration of the classic perception of a critical nucleus
- …