122 research outputs found

    Prediction of Human Intestinal Absorption by GA Feature Selection and Support Vector Machine Regression

    Get PDF
    QSAR (Quantitative Structure Activity Relationships) models for the prediction of human intestinal absorption (HIA) were built with molecular descriptors calculated by ADRIANA.Code, Cerius2 and a combination of them. A dataset of 552 compounds covering a wide range of current drugs with experimental HIA values was investigated. A Genetic Algorithm feature selection method was applied to select proper descriptors. A Kohonen's self-organizing Neural Network (KohNN) map was used to split the whole dataset into a training set including 380 compounds and a test set consisting of 172 compounds. First, the six selected descriptors from ADRIANA.Code and the six selected descriptors from Cerius2 were used as the input descriptors for building quantitative models using Partial Least Square (PLS) analysis and Support Vector Machine (SVM) Regression. Then, another two models were built based on nine descriptors selected by a combination of ADRIANA.Code and Cerius2 descriptors using PLS and SVM, respectively. For the three SVM models, correlation coefficients (r) of 0.87, 0.89 and 0.88 were achieved; and standard deviations (s) of 10.98, 9.72 and 9.14 were obtained for the test set

    Determination of pyridoxal-5′-phosphate (PLP)-bonding sites in proteins: a peptide mass fingerprinting approach based on diagnostic tandem mass spectral features of PLP-modified peptides

    Full text link
    Peptides modified by pyridoxal-5′-phosphate (PLP), linked to a lysine residue via reductive amination, exhibit distinct spectral characteristics in the collision-induced dissociation (CID) tandem mass (MS/MS) spectra that are described here. The MS/MS spectra typically display two dominant peaks whose m/z values correspond to neutral losses of [H 3 PO 4 ] (−98 Da) and the PLP moiety as [C 8 H 10 NO 5 P] (−231 Da) from the precursor peptide ion, respectively. Few other peaks are observed. Recognition of this distinct fragmentation behavior is imperative since determining sequences and sites of modifications relies on the formation of amide backbone cleavage products for subsequent interpretation via proteome database searching. Additionally, PLP-modified peptides exhibit suppressed precursor ionization efficiency which diminishes their detection in complex mixtures. Presented here is a protocol which describes an enrichment strategy for PLP-modified peptides combined with neutral loss screening and peptide mass fingerprinting to map the PLP-bonding site in a known PLP-dependent protein. This approach represents an efficient alternative to site-directed mutagenesis which has been the traditional method used for PLP-bonding site localization in proteins. Copyright © 2009 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64342/1/4270_ftp.pd

    Student diversity and student voice conceptualisations in five European countries: Implications for including all students in schools

    Get PDF
    This article analyses the ways in which notions of student diversity and student voice are defined in five European countries, two terms directly related to notions of inclusion. In so doing, it examines links between the two terms, noting that, often, they are used in international research without acknowledging the ways that they are defined within particular national contexts. Using literature and policy documents from five countries (i.e. Austria, Denmark, England, Portugal and Spain), the article highlights similarities as well as differences in the various contexts. Through the analysis of these texts, the paper concludes that diversity is conceptualised in five ways, although there is occasionally overlap of different conceptualisations in some of the countries. Meanwhile, the term 'student voice' is a term that is not used in some of the countries' policies. Instead, other terms that relate to student voice, such as 'participation', are used. The paper discusses the implications of these varied understandings for the promotion of the inclusion of all students in schools.Erasmus+ Key Action 2, School Education Strategic Partnerships 2017-1-UK01-KA201-036665info:eu-repo/semantics/publishedVersio

    Analysis of the interaction with the hepatitis C virus mRNA reveals an alternative mode of RNA recognition by the human La protein

    Get PDF
    Human La protein is an essential factor in the biology of both coding and non-coding RNAs. In the nucleus, La binds primarily to 3′ oligoU containing RNAs, while in the cytoplasm La interacts with an array of different mRNAs lacking a 3′ UUUOH trailer. An example of the latter is the binding of La to the IRES domain IV of the hepatitis C virus (HCV) RNA, which is associated with viral translation stimulation. By systematic biophysical investigations, we have found that La binds to domain IV using an RNA recognition that is quite distinct from its mode of binding to RNAs with a 3′ UUUOH trailer: although the La motif and first RNA recognition motif (RRM1) are sufficient for high-affinity binding to 3′ oligoU, recognition of HCV domain IV requires the La motif and RRM1 to work in concert with the atypical RRM2 which has not previously been shown to have a significant role in RNA binding. This new mode of binding does not appear sequence specific, but recognizes structural features of the RNA, in particular a double-stranded stem flanked by single-stranded extensions. These findings pave the way for a better understanding of the role of La in viral translation initiation

    Inter-Species Complementation of the Translocon Beta Subunit Requires Only Its Transmembrane Domain

    Get PDF
    In eukaryotes, proteins enter the secretory pathway through the translocon pore of the endoplasmic reticulum. This protein translocation channel is composed of three major subunits, called Sec61α, β and γ in mammals. Unlike the other subunits, the β subunit is dispensable for translocation and cell viability in all organisms studied. Intriguingly, the knockout of the Sec61β encoding genes results in different phenotypes in different species. Nevertheless, the β subunit shows a high level of sequence homology across species, suggesting the conservation of a biological function that remains ill-defined. To address its cellular roles, we characterized the homolog of Sec61β in the fission yeast Schizosaccharomyces pombe (Sbh1p). Here, we show that the knockout of sbh1+ results in severe cold sensitivity, increased sensitivity to cell-wall stress, and reduced protein secretion at 23°C. Sec61β homologs from Saccharomyces cerevisiae and human complement the knockout of sbh1+ in S. pombe. As in S. cerevisiae, the transmembrane domain (TMD) of S. pombe Sec61β is sufficient to complement the phenotypes resulting from the knockout of the entire encoding gene. Remarkably, the TMD of Sec61β from S. cerevisiae and human also complement the gene knockouts in both yeasts. Together, these observations indicate that the TMD of Sec61β exerts a cellular function that is conserved across species

    Inter-Species Complementation of the Translocon Beta Subunit Requires Only Its Transmembrane Domain

    Get PDF
    In eukaryotes, proteins enter the secretory pathway through the translocon pore of the endoplasmic reticulum. This protein translocation channel is composed of three major subunits, called Sec61α, β and γ in mammals. Unlike the other subunits, the β subunit is dispensable for translocation and cell viability in all organisms studied. Intriguingly, the knockout of the Sec61β encoding genes results in different phenotypes in different species. Nevertheless, the β subunit shows a high level of sequence homology across species, suggesting the conservation of a biological function that remains ill-defined. To address its cellular roles, we characterized the homolog of Sec61β in the fission yeast Schizosaccharomyces pombe (Sbh1p). Here, we show that the knockout of sbh1+ results in severe cold sensitivity, increased sensitivity to cell-wall stress, and reduced protein secretion at 23°C. Sec61β homologs from Saccharomyces cerevisiae and human complement the knockout of sbh1+ in S. pombe. As in S. cerevisiae, the transmembrane domain (TMD) of S. pombe Sec61β is sufficient to complement the phenotypes resulting from the knockout of the entire encoding gene. Remarkably, the TMD of Sec61β from S. cerevisiae and human also complement the gene knockouts in both yeasts. Together, these observations indicate that the TMD of Sec61β exerts a cellular function that is conserved across species

    Design of a VLP-nanovehicle for CYP450 enzymatic activity delivery

    Get PDF
    BACKGROUND: The intracellular delivery of enzymes for therapeutic use has a promising future for the treatment of several diseases such as genetic disorders and cancer. Virus-like particles offer an interesting platform for enzymatic delivery to targeted cells because of their great cargo capacity and the enhancement of the biocatalyst stability towards several factors important in the practical application of these nanoparticles. RESULTS: We have designed a nano-bioreactor based on the encapsulation of a cytochrome P450 (CYP) inside the capsid derived from the bacteriophage P22. An enhanced peroxigenase, CYPBM3, was selected as a model enzyme because of its potential in enzyme prodrug therapy. A total of 109 enzymes per capsid were encapsulated with a 70 % retention of activity for cytochromes with the correct incorporation of the heme cofactor. Upon encapsulation, the stability of the enzyme towards protease degradation and acidic pH was increased. Cytochrome P450 activity was delivered into Human cervix carcinoma cells via transfecting P22-CYP nanoparticles with lipofectamine. CONCLUSION: This work provides a clear demonstration of the potential of biocatalytic virus-like particles as medical relevant enzymatic delivery vehicles for clinical applications

    Large-scale exome-wide association analysis identifies loci for White Blood Cell Traits and Pleiotropy with Immune-Mediated Diseases

    Get PDF
    White blood cells play diverse roles in innate and adaptive immunity. Genetic association analyses of phenotypic variation in circulating white blood cell (WBC) counts from large samples of otherwise healthy individuals can provide insights into genes and biologic pathways involved in production, differentiation, or clearance of particular WBC lineages (myeloid, lymphoid) and also potentially inform the genetic basis of autoimmune, allergic, and blood diseases. We performed an exome array-based meta-analysis of total WBC and subtype counts (neutrophils, monocytes, lymphocytes, basophils, and eosinophils) in a multi-ancestry discovery and replication sample of ∼157,622 individuals from 25 studies. We identified 16 common variants (8 of which were coding variants) associated with one or more WBC traits, the majority of which are pleiotropically associated with autoimmune diseases. Based on functional annotation, these loci included genes encoding surface markers of myeloid, lymphoid, or hematopoietic stem cell differentiation (CD69, CD33, CD87), transcription factors regulating lineage specification during hematopoiesis (ASXL1, IRF8, IKZF1, JMJD1C, ETS2-PSMG1), and molecules involved in neutrophil clearance/apoptosis (C10orf54, LTA), adhesion (TNXB), or centrosome and microtubule structure/function (KIF9, TUBD1). Together with recent reports of somatic ASXL1 mutations among individuals with idiopathic cytopenias or clonal hematopoiesis of undetermined significance, the identification of a common regulatory 3 UTR variant of ASXL1 suggests that both germline and somatic ASXL1 mutations contribute to lower blood counts in otherwise asymptomatic individuals. These association results shed light on genetic mechanisms that regulate circulating WBC counts and suggest a prominent shared genetic architecture with inflammatory and autoimmune diseases
    corecore