1 research outputs found
Toward Decentralized Wastewater Treatment: A Flow-through Module Using Microtubular Gas Diffusion Electrodes for Micropollutants Removal
Electro-Fenton (EF) represents an eco-friendly and cost-effective advanced oxidation process that can remove highly persistent and hazardous pharmaceuticals, e.g., contrast media agents, from water bodies. However, up to date, EF modules incorporate a planar carbonaceous gas diffusion electrode (GDE) cathode containing fluorinated compounds as polymeric binders. Here, we introduce a novel flow-through module that deploys freestanding carbon microtubes (CMT) as microtubular GDEs, omitting any risks of secondary pollution by highly-persistent fluorinated compounds (e.g., Nafion). The flow-through module was characterized for electrochemical hydrogen peroxide (H2O2) generation and micropollutant removal via EF. H2O2 electro-generation experiments illustrated high production rates (1.1~±~0.1– 2.7~±~0.1~mg~cm-2 h-1) at an applied cathodic potential of -~0.6~V vs. SHE, depending on the porosity of CMTs. Diatrizoate (DTZ), as the model pollutant, with a high initial concentration of 100~mg~L-1 was successfully oxidized (95– 100 %), reaching mineralization (TOC— total organic carbon removal) efficiencies up to 69 %. Additionally, Electro-adsorption experiments demonstrated the capability of positively charged CMTs to remove negatively charged DTZ with a capacity of 11~mg~g-1 from a 10~mg~L-1 DTZ solution. These results reveal the potential of the as-designed module to serve as an oxidation unit coupled with other separation techniques, e.g., electro-adsorption or membrane processes