21 research outputs found

    MS-READ: Quantitative Measurement of Amino Acid Incorporation

    Get PDF
    Ribosomal protein synthesis results in the genetically programmed incorporation of amino acids into a growing polypeptide chain. Faithful amino acid incorporation that accurately reflects the genetic code is critical to the structure and function of proteins as well as overall proteome integrity. Errors in protein synthesis are generally detrimental to cellular processes yet emerging evidence suggest that proteome diversity generated through mistranslation may be beneficial under certain conditions. Cumulative translational error rates have been determined at the organismal level, however codon specific error rates and the spectrum of misincorporation errors from system to system remain largely unexplored. In particular, until recently technical challenges have limited the ability to detect and quantify comparatively rare amino acid misincorporation events, which occur orders of magnitude less frequently than canonical amino acid incorporation events. We now describe a technique for the quantitative analysis of amino acid incorporation that provides the sensitivity necessary to detect mistranslation events during translation of a single codon at frequencies as low as 1 in 10,000 for all 20 proteinogenic amino acids, as well as non-proteinogenic and modified amino acids. This article is part of a Special Issue entitled Biochemistry of Synthetic Biology - Recent Developments Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O’Donoghue

    Editing of Misaminoacylated tRNA Controls the Sensitivity of Amino Acid Stress Responses in Saccharomyces cerevisiae

    Get PDF
    Amino acid starvation activates the protein kinase Gcn2p, leading to changes in gene expression and translation. Gcn2p is activated by deacylated tRNA, which accumulates when tRNA aminoacylation is limited by lack of substrates or inhibition of synthesis. Pairing of amino acids and deacylated tRNAs is catalyzed by aminoacyl-tRNA synthetases, which use quality control pathways to maintain substrate specificity. Phenylalanyl-tRNA synthetase (PheRS) maintains specificity via an editing pathway that targets non-cognate Tyr-tRNAPhe. While the primary role of aaRS editing is to prevent misaminoacylation, we demonstrate editing of misaminoacylated tRNA is also required for detection of amino acid starvation by Gcn2p. Ablation of PheRS editing caused accumulation of Tyr-tRNAPhe (5%), but not deacylated tRNAPhe during amino acid starvation, limiting Gcn2p kinase activity and suppressing Gcn4p-dependent gene expression. While the PheRS-editing ablated strain grew 50% slower and displayed a 27-fold increase in the rate of mistranslation of Phe codons as Tyr compared to wild type, the increase in mistranslation was insufficient to activate an unfolded protein stress response. These findings show that during amino acid starvation a primary role of aaRS quality control is to help the cell mount an effective stress response, independent of the role of editing in maintaining translational accuracy

    Mechanisms involved in AMPK-mediated deposition of tight junction components to the plasma membrane.

    Full text link
    AMP activated protein kinase (AMPK) activation promotes early stages of epithelial junction assembly. AMPK activation in MDCK renal epithelial cells facilitates localization of the junction-associated proteins aPKCzeta and Par3 to the plasma membrane and promotes conversion of Cdc42, a key regulator of epithelial polarization and junction assembly, to its active GTP bound state. Furthermore, Par3 is an important regulator of AMPK-mediated aPKCzeta localization. Both aPKCzeta and Par3 serve as intermediates in AMPK-mediated junction assembly, with inhibition of aPKCzeta activity or Par3 knockdown disrupting AMPK's ability to facilitate zonula occludens (ZO-1) localization. AMPK phosphorylates the adherens junction protein afadin and regulates its interaction with the tight junction protein zonula occludens (ZO)-1. Afadin is phosphorylated at two critical sites, S182 (residing within an aPKCzeta consensus site) and S1049 (residing within an AMPK consensus site), that are differentially regulated during junction assembly and that exert different effects on the process. Expression of phospho-defective mutants (S182A and S1082A) perturbed ZO-1 localization to the plasma membrane during AMPK-induced junction assembly. Expression of S182A increased the ZO-1/afadin interaction, while S1049A reduced this interaction during extracellular calcium-induced junction assembly. Inhibition of aPKCzeta activity also increased the ZO-1/afadin interaction. Taken together, these data suggest that aPKCzeta phosphorylation of afadin terminates the ZO-1/afadin interaction, and thus permits the later stages of junction assembly

    Designed Phosphoprotein Recognition in <i>Escherichia coli</i>

    No full text
    Protein phosphorylation is a central biological mechanism for cellular adaptation to environmental changes. Dysregulation of phosphorylation signaling is implicated in a wide variety of diseases. Thus, the ability to detect and quantify protein phosphorylation is highly desirable for both diagnostic and research applications. Here we present a general strategy for detecting phosphopeptide–protein interactions in <i>Escherichia coli</i>. We first redesign a model tetratricopeptide repeat (TPR) protein to recognize phosphoserine in a sequence-specific fashion and characterize the interaction with its target phosphopeptide <i>in vitro</i>. We then combine <i>in vivo</i> site-specific incorporation of phosphoserine with split mCherry assembly to observe the designed phosphopeptide–protein interaction specificity in <i>E. coli</i>. This <i>in vivo</i> strategy for detecting and characterizing phosphopeptide–protein interactions has numerous potential applications for the study of natural interactions and the design of novel ones
    corecore