3 research outputs found
Alteration of Relative Rates of Biodegradation and Regeneration of Cervical Spine Cartilage through the Restoration of Arterial Blood Flow Access to Rhomboid Fossa: A Hypothesis
We found the logical way to prove the existence of the mechanism that maintains the rates of biodegradation and regeneration of cervical spine cartilage. We demonstrate, that after we restore access to arterial blood flow through cervical vertebral arteries to rhomboid fossa it causes the prevalence of regeneration over biodegradation. This is in the frames of consideration of the human body as a dissipative structure. Then the recovery of the body should be considered as a reduction of the relative rates of decay below the regeneration ones. Then the recovery of cervical spine cartilage through redirecting of inner dissipative flow depends on the information about oxygen availability that is provided from oxygen detectors in the rhomboid fossa to the cerebellum. Our proposed approach explains already collected data, which satisfies all the scientific requirements. This allows us to draw conclusions that permit reconsidering the way of dealing with multiple chronic diseases
Centralized aerobic-anaerobic energy balance compensation theory perspective in biomedicine
Recently announced centralized aerobic-anaerobic energy balance compensation (CAAEBC) theory has already demonstrated achievements in the treatment of arterial hypertension (AHT), diabetes myelitis (DM) and osteochondrosis. Such demonstration lifts the necessity to check the applicability of this theory to other non-communicable diseases (NCDs) and develop the proper way to model the main idea of CAAEBC
Alteration of Relative Rates of Biodegradation and Regeneration of Cervical Spine Cartilage through the Restoration of Arterial Blood Flow Access to Rhomboid Fossa: A Hypothesis
We found the logical way to prove the existence of the mechanism that maintains the rates of biodegradation and regeneration of cervical spine cartilage. We demonstrate, that after we restore access to arterial blood flow through cervical vertebral arteries to rhomboid fossa it causes the prevalence of regeneration over biodegradation. This is in the frames of consideration of the human body as a dissipative structure. Then the recovery of the body should be considered as a reduction of the relative rates of decay below the regeneration ones. Then the recovery of cervical spine cartilage through redirecting of inner dissipative flow depends on the information about oxygen availability that is provided from oxygen detectors in the rhomboid fossa to the cerebellum. Our proposed approach explains already collected data, which satisfies all the scientific requirements. This allows us to draw conclusions that permit reconsidering the way of dealing with multiple chronic diseases