758 research outputs found

    Classical dynamics on graphs

    Full text link
    We consider the classical evolution of a particle on a graph by using a time-continuous Frobenius-Perron operator which generalizes previous propositions. In this way, the relaxation rates as well as the chaotic properties can be defined for the time-continuous classical dynamics on graphs. These properties are given as the zeros of some periodic-orbit zeta functions. We consider in detail the case of infinite periodic graphs where the particle undergoes a diffusion process. The infinite spatial extension is taken into account by Fourier transforms which decompose the observables and probability densities into sectors corresponding to different values of the wave number. The hydrodynamic modes of diffusion are studied by an eigenvalue problem of a Frobenius-Perron operator corresponding to a given sector. The diffusion coefficient is obtained from the hydrodynamic modes of diffusion and has the Green-Kubo form. Moreover, we study finite but large open graphs which converge to the infinite periodic graph when their size goes to infinity. The lifetime of the particle on the open graph is shown to correspond to the lifetime of a system which undergoes a diffusion process before it escapes.Comment: 42 pages and 8 figure

    Scarring in open quantum systems

    Get PDF
    We study scarring phenomena in open quantum systems. We show numerical evidence that individual resonance eigenstates of an open quantum system present localization around unstable short periodic orbits in a similar way as their closed counterparts. The structure of eigenfunctions around these classical objects is not destroyed by the opening. This is exposed in a paradigmatic system of quantum chaos, the cat map.Comment: 4 pages, 4 figure

    Localization of resonance eigenfunctions on quantum repellers

    Full text link
    We introduce a new phase space representation for open quantum systems. This is a very powerful tool to help advance in the study of the morphology of their eigenstates. We apply it to two different versions of a paradigmatic model, the baker map. This allows to show that the long-lived resonances are strongly scarred along the shortest periodic orbits that belong to the classical repeller. Moreover, the shape of the short-lived eigenstates is also analyzed. Finally, we apply an antiunitary symmetry measure to the resonances that permits to quantify their localization on the repeller.Comment: 4 pages, 4 figure

    Comparison of averages of flows and maps

    Get PDF
    It is shown that in transient chaos there is no direct relation between averages in a continuos time dynamical system (flow) and averages using the analogous discrete system defined by the corresponding Poincare map. In contrast to permanent chaos, results obtained from the Poincare map can even be qualitatively incorrect. The reason is that the return time between intersections on the Poincare surface becomes relevant. However, after introducing a true-time Poincare map, quantities known from the usual Poincare map, such as conditionally invariant measure and natural measure, can be generalized to this case. Escape rates and averages, e.g. Liapunov exponents and drifts can be determined correctly using these novel measures. Significant differences become evident when we compare with results obtained from the usual Poincare map.Comment: 4 pages in Revtex with 2 included postscript figures, submitted to Phys. Rev.

    Typical state of an isolated quantum system with fixed energy and unrestricted participation of eigenstates

    Full text link
    This work describes the statistics for the occupation numbers of quantum levels in a large isolated quantum system, where all possible superpositions of eigenstates are allowed, provided all these superpositions have the same fixed energy. Such a condition is not equivalent to the conventional micro-canonical condition, because the latter limits the participating eigenstates to a very narrow energy window. The statistics is obtained analytically for both the entire system and its small subsystem. In a significant departure from the Boltzmann-Gibbs statistics, the average occupation numbers of quantum states exhibit in the present case weak algebraic dependence on energy. In the macroscopic limit, this dependence is routinely accompanied by the condensation into the lowest energy quantum state. This work contains initial numerical tests of the above statistics for finite systems, and also reports the following numerical finding: When the basis states of large but finite random matrix Hamiltonians are expanded in terms of eigenstates, the participation of eigenstates in such an expansion obeys the newly obtained statistics. The above statistics might be observable in small quantum systems, but for the macroscopic systems, it rather reenforces doubts about self-sufficiency of non-relativistic quantum mechanics for justifying the Boltzmann-Gibbs equilibrium.Comment: 20 pages, 3 figure

    Transport and dynamics on open quantum graphs

    Full text link
    We study the classical limit of quantum mechanics on graphs by introducing a Wigner function for graphs. The classical dynamics is compared to the quantum dynamics obtained from the propagator. In particular we consider extended open graphs whose classical dynamics generate a diffusion process. The transport properties of the classical system are revealed in the scattering resonances and in the time evolution of the quantum system.Comment: 42 pages, 13 figures, submitted to PR

    A New Method for Computing Topological Pressure

    Get PDF
    The topological pressure introduced by Ruelle and similar quantities describe dynamical multifractal properties of dynamical systems. These are important characteristics of mesoscopic systems in the classical regime. Original definition of these quantities are based on the symbolic description of the dynamics. It is hard or impossible to find symbolic description and generating partition to a general dynamical system, therefore these quantities are often not accessible for further studies. Here we present a new method by which the symbolic description can be omitted. We apply the method for a mixing and an intermittent system.Comment: 8 pages LaTeX with revtex.sty, the 4 postscript figures are included using psfig.tex to appear in PR

    Noise-enhanced trapping in chaotic scattering

    Get PDF
    We show that noise enhances the trapping of trajectories in scattering systems. In fully chaotic systems, the decay rate can decrease with increasing noise due to a generic mismatch between the noiseless escape rate and the value predicted by the Liouville measure of the exit set. In Hamiltonian systems with mixed phase space we show that noise leads to a slower algebraic decay due to trajectories performing a random walk inside Kolmogorov-Arnold-Moser islands. We argue that these noise-enhanced trapping mechanisms exist in most scattering systems and are likely to be dominant for small noise intensities, which is confirmed through a detailed investigation in the Henon map. Our results can be tested in fluid experiments, affect the fractal Weyl's law of quantum systems, and modify the estimations of chemical reaction rates based on phase-space transition state theory.Comment: 5 pages, 5 figure

    Fluctuation theorem for currents and Schnakenberg network theory

    Full text link
    A fluctuation theorem is proved for the macroscopic currents of a system in a nonequilibrium steady state, by using Schnakenberg network theory. The theorem can be applied, in particular, in reaction systems where the affinities or thermodynamic forces are defined globally in terms of the cycles of the graph associated with the stochastic process describing the time evolution.Comment: new version : 16 pages, 1 figure, to be published in Journal of Statistical Physic

    Phase relationship between the long-time beats of free induction decays and spin echoes in solids

    Full text link
    Recent theoretical work on the role of microscopic chaos in the dynamics and relaxation of many-body quantum systems has made several experimentally confirmed predictions about the systems of interacting nuclear spins in solids, focusing, in particular, on the shapes of spin echo responses measured by nuclear magnetic resonance (NMR). These predictions were based on the idea that the transverse nuclear spin decays evolve in a manner governed at long times by the slowest decaying eigenmode of the quantum system, analogous to a chaotic resonance in a classical system. The present paper extends the above investigations both theoretically and experimentally. On the theoretical side, the notion of chaotic eigenmodes is used to make predictions about the relationships between the long-time oscillation phase of the nuclear free induction decay (FID) and the amplitudes and phases of spin echoes. On the experimental side, the above predictions are tested for the nuclear spin decays of F-19 in CaF2 crystals and Xe-129 in frozen xenon. Good agreement between the theory and the experiment is found.Comment: 20 pages, 9 figures, significant new experimental content in comparison with version
    • …
    corecore