16 research outputs found

    Phenotypic heterogeneity in females with X-linked Alport syndrome

    Get PDF
    Aims: X-linked Alport syndrome (AS) is a monogenic inherited disorder of type IV collagen, a structural protein in the kidney and cochlea. Males typically exhibit a severe phenotype with end-stage renal disease (ESRD) and/or deafness by early adulthood. Because of the presence of two X chromosomes, females often have a less severe phenotype and hence the diagnosis of AS is often not considered. Herein, we present a case of an adolescent girl with proteinuria and hematuria in the setting of a strong family history of AL. Case report: The mother and maternal aunt of the proband had both presented with dipstick positive hematuria and proteinuria at age 8 years. These girls were not evaluated by nephrology until mid-adolescence when they had worsening creatinine levels. Kidney biopsy in the younger sister demonstrated segmental glomerulosclerosis with segmental thinning and lamination of the glomerular basement membrane, consistent with AS. Kidney biopsy in the older sister was performed just prior to the need for renal replacement therapy and showed only global glomerulosclerosis. Both sisters were transplanted by the age of 20 years. Their mother subsequently developed ESRD at age 53 years. With the advent of genetic testing, the proband and her family were brought in for evaluation. It had been assumed this family of AS had autosomal dominant transmission, however, genetic testing of the proband was positive for a splice site mutation of COL4A5 located on the X-chromosome. Sequencing of genes COL4A3, COL4A4, and COL4A6 were negative for mutation. Conclusions: The current case report demonstrates the importance of considering skewed X-inactivation in females who exhibit signs or symptoms of X-linked disorders

    Treatment with Glucocorticoids or Calcineurin Inhibitors in Primary FSGS

    Get PDF
    In primary FSGS, calcineurin inhibitors have primarily been studied in patients deemed resistant to glucocorticoid therapy. Few data are available about their use early in the treatment of FSGS. We sought to estimate the association between choice of therapy and ESRD in primary FSGS

    The Application of Digital Pathology to Improve Accuracy in Glomerular Enumeration in Renal Biopsies.

    Get PDF
    BACKGROUND: In renal biopsy reporting, quantitative measurements, such as glomerular number and percentage of globally sclerotic glomeruli, is central to diagnostic accuracy and prognosis. The aim of this study is to determine the number of glomeruli and percent globally sclerotic in renal biopsies by means of registration of serial tissue sections and manual enumeration, compared to the numbers in pathology reports from routine light microscopic assessment. DESIGN: We reviewed 277 biopsies from the Nephrotic Syndrome Study Network (NEPTUNE) digital pathology repository, enumerating 9,379 glomeruli by means of whole slide imaging. Glomerular number and the percentage of globally sclerotic glomeruli are values routinely recorded in the official renal biopsy pathology report from the 25 participating centers. Two general trends in reporting were noted: total number per biopsy or average number per level/section. Both of these approaches were assessed for their accuracy in comparison to the analogous numbers of annotated glomeruli on WSI. RESULTS: The number of glomeruli annotated was consistently higher than those reported (p CONCLUSIONS: Although glass slides were not available for direct comparison to whole slide image annotation, this study indicates that routine manual light microscopy assessment of number of glomeruli is inaccurate, and the magnitude of this error is proportional to the total number of glomeruli

    The Application of Digital Pathology to Improve Accuracy in Glomerular Enumeration in Renal Biopsies

    Get PDF
    In renal biopsy reporting, quantitative measurements, such as glomerular number and percentage of globally sclerotic glomeruli, is central to diagnostic accuracy and prognosis. The aim of this study is to determine the number of glomeruli and percent globally sclerotic in renal biopsies by means of registration of serial tissue sections and manual enumeration, compared to the numbers in pathology reports from routine light microscopic assessment

    Palladin is Upregulated in Kidney Disease and Contributes to Epithelial Cell Migration After Injury

    Get PDF
    Recovery from acute kidney injury involving tubular epithelial cells requires proliferation and migration of healthy cells to the area of injury. In this study, we show that palladin, a previously characterized cytoskeletal protein, is upregulated in injured tubules and suggest that one of its functions during repair is to facilitate migration of remaining cells to the affected site. In a mouse model of anti-neutrophilic cytoplasmic antibody involving both tubular and glomerular disease, palladin is upregulated in injured tubular cells, crescents and capillary cells with angiitis. In human biopsies of kidneys from patients with other kidney diseases, palladin is also upregulated in crescents and injured tubules. In LLC-PK1 cells, a porcine proximal tubule cell line, stress induced by transforming growth factor-β1 (TGF-β1) leads to palladin upregulation. Knockdown of palladin in LLC-PK1 does not disrupt cell morphology but does lead to a defect in cell migration. Furthermore, TGF-β1 induced increase in the 75 kDa palladin isoform occurs in both the nucleus and the cytoplasm. These data suggest that palladin expression is induced in injured cells and contributes to proper migration of cells in proximal tubules, possibly by regulation of gene expression as part of the healing process after acute injury

    Comparison between Regression Models, Support Vector Machine (SVM), and Artificial Neural Network (ANN) in River Water Quality Prediction

    No full text
    Both anthropogenic and natural sources of pollution are regionally significant. Therefore, in order to monitor and protect the quality of Langat River from deterioration, we use Artificial Intelligence (AI) to model the river water quality. This study has applied several machine learning models (two support vector machines (SVMs), six regression models, and artificial neural network (ANN)) to predict total suspended solids (TSS), total solids (TS), and dissolved solids (DS)) in Langat River, Malaysia. All of the models have been assessed using root mean square error (RMSE), mean square error (MSE) as well as the determination of coefficient (R2). Based on the model performance metrics, the ANN model outperformed all models, while the GPR and SVM models exhibited the characteristic of over-fitting. The remaining machine learning models exhibited fair to poor performances. Although there are a few researches conducted to predict TDS using ANN, however, there are less to no research conducted to predict TS and TSS in Langat River. Therefore, this is the first study to evaluate the water quality (TSS, TS, and DS) of Langat River using the aforementioned models (especially SVM and the six regression models)

    Treatment with Glucocorticoids or Calcineurin Inhibitors in Primary FSGS

    No full text
    BACKGROUND AND OBJECTIVES: In primary FSGS, calcineurin inhibitors have primarily been studied in patients deemed resistant to glucocorticoid therapy. Few data are available about their use early in the treatment of FSGS. We sought to estimate the association between choice of therapy and ESRD in primary FSGS. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: We used an inception cohort of patients diagnosed with primary FSGS by kidney biopsy between 1980 and 2012. Factors associated with initiation of therapy were identified using logistic regression. Time–dependent Cox models were performed to compare time to ESRD between different therapies. RESULTS: In total, 458 patients were studied (173 treated with glucocorticoids alone, 90 treated with calcineurin inhibitors with or without glucocorticoids, 12 treated with other agents, and 183 not treated with immunosuppressives). Tip lesion variant, absence of severe renal dysfunction (eGFR≥30 ml/min per 1.73 m(2)), and hypoalbuminemia were associated with a higher likelihood of exposure to any immunosuppressive therapy. Only tip lesion was associated with initiation of glucocorticoids alone over calcineurin inhibitors. With adjusted Cox regression, immunosuppressive therapy with glucocorticoids and/or calcineurin inhibitors was associated with better renal survival than no immunosuppression (hazard ratio, 0.49; 95% confidence interval, 0.28 to 0.86). Calcineurin inhibitors with or without glucocorticoids were not significantly associated with a lower likelihood of ESRD compared with glucocorticoids alone (hazard ratio, 0.42; 95% confidence interval, 0.15 to 1.18). CONCLUSIONS: The use of immunosuppressive therapy with calcineurin inhibitors and/or glucocorticoids as part of the early immunosuppressive regimen in primary FSGS was associated with improved renal outcome, but the superiority of calcineurin inhibitors over glucocorticoids alone remained unproven

    Low TGFβ1 expression prevents and high expression exacerbates diabetic nephropathy in mice

    No full text
    Nephropathy develops in many but not all patients with long-standing type 1 diabetes. Substantial efforts to identify genotypic differences explaining this differential susceptibility have been made, with limited success. Here, we show that the expression of the transforming growth factor β1 gene (Tgfb1) affects the development of diabetic nephropathy in mice. To do this we genetically varied Tgfb1 expression in five steps, 10%, 60%, 100%, 150%, and 300% of normal, in mice with type 1 diabetes caused by the Akita mutation in the insulin gene (Ins2(Akita)). Although plasma glucose levels were not affected by Tgfb1 genotype, many features of diabetic nephropathy (mesangial expansion, elevated plasma creatinine and urea, decreased creatinine clearance and albuminuria) were progressively ameliorated as Tgfb1 expression decreased and were progressively exacerbated when expression was increased. The diabetic 10% hypomorphs had comparable creatinine clearance and albumin excretion to wild-type mice and no harmful changes in renal morphology. The diabetic 300% hypermorphs had ∼1/3 the creatinine clearance of wild-type mice, >20× their albumin excretion, ∼3× thicker glomerular basement membranes and severe podocyte effacement, matching human diabetic nephropathy. Switching Tgfb1 expression from low to high in the tubules of the hypomorphs increased their albumin excretion more than 10-fold but creatinine clearance remained high. Switching Tgfb1 expression from low to high in the podocytes markedly decreased creatinine clearance, but minimally increased albumin excretion. Decreasing expression of Tgfb1 could be a promising option for preventing loss of renal function in diabetes
    corecore