33 research outputs found

    SHP1ā€ing thymic selection

    No full text
    Thymocyte development and maintenance of peripheral T-cell numbers and functions are critically dependent on T-cell receptor (TCR) signal strength. SHP1 (Src homology region 2 domain-containing phosphatase-1), a tyrosine phosphatase, acts as a negative regulator of TCR signal strength. Moreover, germline SHP1 knockout mice have shown impaired thymic development. However, this has been recently questioned by an analysis of SHP1 conditional knockout mice, which reported normal thymic development of SHP1 deficient thymocytes. Using this SHP1 conditional knockout mice, in this issue of the European Journal of Immunology, Martinez etĀ al. [Eur. J. Immunol. 2016. 46: 2103-2110] show that SHP1 indeed does have a role in the negative regulation of TCR signal strength in positively selected thymocytes, and in the final maturation of single positive thymocytes. They report that thymocyte development in such mice shows loss of mature, post-selection cells. This is due to increased TCR signal transduction in thymocytes immediately post positive-selection, and increased cell death in response to weak TCR ligands. Thus, SHP1-deficiency shows strong similarities to deficiency in the T-cell specific SHP1-associated protein Themis

    SHP1-ing thymic selection

    No full text
    Thymocyte development and maintenance of peripheral T-cell numbers and functions are critically dependent on T-cell receptor (TCR) signal strength. SHP1 (Src homology region 2 domain-containing phosphatase-1), a tyrosine phosphatase, acts as a negative regulator of TCR signal strength. Moreover, germline SHP1 knockout mice have shown impaired thymic development. However, this has been recently questioned by an analysis of SHP1 conditional knockout mice, which reported normal thymic development of SHP1 deficient thymocytes. Using this SHP1 conditional knockout mice, in this issue of the European Journal of Immunology, Martinez etĀ al. [Eur. J. Immunol. 2016. 46: 2103-2110] show that SHP1 indeed does have a role in the negative regulation of TCR signal strength in positively selected thymocytes, and in the final maturation of single positive thymocytes. They report that thymocyte development in such mice shows loss of mature, post-selection cells. This is due to increased TCR signal transduction in thymocytes immediately post positive-selection, and increased cell death in response to weak TCR ligands. Thus, SHP1-deficiency shows strong similarities to deficiency in the T-cell specific SHP1-associated protein Themis

    SHP1-ing thymic selection

    No full text
    Thymocyte development and maintenance of peripheral T-cell numbers and functions are critically dependent on T-cell receptor (TCR) signal strength. SHP1 (Src homology region 2 domain-containing phosphatase-1), a tyrosine phosphatase, acts as a negative regulator of TCR signal strength. Moreover, germline SHP1 knockout mice have shown impaired thymic development. However, this has been recently questioned by an analysis of SHP1 conditional knockout mice, which reported normal thymic development of SHP1 deficient thymocytes. Using this SHP1 conditional knockout mice, in this issue of the European Journal of Immunology, Martinez etĀ al. [Eur. J. Immunol. 2016. 46: 2103-2110] show that SHP1 indeed does have a role in the negative regulation of TCR signal strength in positively selected thymocytes, and in the final maturation of single positive thymocytes. They report that thymocyte development in such mice shows loss of mature, post-selection cells. This is due to increased TCR signal transduction in thymocytes immediately post positive-selection, and increased cell death in response to weak TCR ligands. Thus, SHP1-deficiency shows strong similarities to deficiency in the T-cell specific SHP1-associated protein Themis

    TCR signal strength and T cell development

    No full text
    Thymocyte selection involves the positive and negative selection of the repertoire of T cell receptors (TCRs) such that the organism does not suffer autoimmunity, yet has the benefit of the ability to recognize any invading pathogen. The signal transduced through the TCR is translated into a number of different signaling cascades that result in transcription factor activity in the nucleus and changes to the cytoskeleton and motility. Negative selection involves inducing apoptosis in thymocytes that express strongly self-reactive TCRs, whereas positive selection must induce survival and differentiation programs in cells that are more weakly self-reactive. The TCR recognition event is analog by nature, but the outcome of signaling is not. A large number of molecules regulate the strength of the TCR-derived signal at various points in the cascades. This review discusses the various factors that can regulate the strength of the TCR signal during thymocyte development

    Organization and Expression of the Murine T-Cell Receptor Ī²-Chain Gene Complex

    No full text

    Use of single chain MHC technology to investigate co-agonism in human CD8+ T cell activation

    No full text
    Non-stimulatory self peptide MHC (pMHC) complexes do not induce T cell activation and effector functions, but can enhance T cell responses to agonist pMHC, through a process termed co-agonism. This protocol describes an experimental system to investigate co-agonism during human CD8+ T cell activation by expressing human MHC class I molecules presenting pre-determined peptides as single polypeptides (single chain MHC) in a xenogeneic cell line. We expressed single chain MHCs under conditions where low levels of agonist single chain p-MHC complexes and high levels of non-stimulatory single chain p-MHC complexes were expressed. Use of this experimental system allowed us to compare CD8+ T cell responses to agonist pMHC in the presence or absence of non-stimulatory pMHC. The protocol describes cell line transfection with single chain MHC constructs, generation of stable cell lines, culture of hepatitis B virus-specific human CD8+ T cells and T cell activation experiments simultaneously quantifying cytokine production and degranulation. The presented methods can be used for research on different aspects of CD8+ T cell activation in human T cell systems with known peptide MHC specificity
    corecore