74 research outputs found

    Learning-based Ensemble Average Propagator Estimation

    Full text link
    By capturing the anisotropic water diffusion in tissue, diffusion magnetic resonance imaging (dMRI) provides a unique tool for noninvasively probing the tissue microstructure and orientation in the human brain. The diffusion profile can be described by the ensemble average propagator (EAP), which is inferred from observed diffusion signals. However, accurate EAP estimation using the number of diffusion gradients that is clinically practical can be challenging. In this work, we propose a deep learning algorithm for EAP estimation, which is named learning-based ensemble average propagator estimation (LEAPE). The EAP is commonly represented by a basis and its associated coefficients, and here we choose the SHORE basis and design a deep network to estimate the coefficients. The network comprises two cascaded components. The first component is a multiple layer perceptron (MLP) that simultaneously predicts the unknown coefficients. However, typical training loss functions, such as mean squared errors, may not properly represent the geometry of the possibly non-Euclidean space of the coefficients, which in particular causes problems for the extraction of directional information from the EAP. Therefore, to regularize the training, in the second component we compute an auxiliary output of approximated fiber orientation (FO) errors with the aid of a second MLP that is trained separately. We performed experiments using dMRI data that resemble clinically achievable qq-space sampling, and observed promising results compared with the conventional EAP estimation method.Comment: Accepted by MICCAI 201

    Fiber-Flux Diffusion Density for White Matter Tracts Analysis: Application to Mild Anomalies Localization in Contact Sports Players

    Full text link
    We present the concept of fiber-flux density for locally quantifying white matter (WM) fiber bundles. By combining scalar diffusivity measures (e.g., fractional anisotropy) with fiber-flux measurements, we define new local descriptors called Fiber-Flux Diffusion Density (FFDD) vectors. Applying each descriptor throughout fiber bundles allows along-tract coupling of a specific diffusion measure with geometrical properties, such as fiber orientation and coherence. A key step in the proposed framework is the construction of an FFDD dissimilarity measure for sub-voxel alignment of fiber bundles, based on the fast marching method (FMM). The obtained aligned WM tract-profiles enable meaningful inter-subject comparisons and group-wise statistical analysis. We demonstrate our method using two different datasets of contact sports players. Along-tract pairwise comparison as well as group-wise analysis, with respect to non-player healthy controls, reveal significant and spatially-consistent FFDD anomalies. Comparing our method with along-tract FA analysis shows improved sensitivity to subtle structural anomalies in football players over standard FA measurements

    Evaluating 35 Methods to Generate Structural Connectomes Using Pairwise Classification

    Full text link
    There is no consensus on how to construct structural brain networks from diffusion MRI. How variations in pre-processing steps affect network reliability and its ability to distinguish subjects remains opaque. In this work, we address this issue by comparing 35 structural connectome-building pipelines. We vary diffusion reconstruction models, tractography algorithms and parcellations. Next, we classify structural connectome pairs as either belonging to the same individual or not. Connectome weights and eight topological derivative measures form our feature set. For experiments, we use three test-retest datasets from the Consortium for Reliability and Reproducibility (CoRR) comprised of a total of 105 individuals. We also compare pairwise classification results to a commonly used parametric test-retest measure, Intraclass Correlation Coefficient (ICC).Comment: Accepted for MICCAI 2017, 8 pages, 3 figure

    Groupwise Structural Parcellation of the Cortex: A Sound Approach Based on Logistic Models

    Get PDF
    International audienceCurrent theories hold that brain function is highly related with long-range physical connections through axonal bundles, namely extrinsic connectivity. However, obtaining a groupwise cortical parcella-tion based on extrinsic connectivity remains challenging. Current par-cellation methods are computationally expensive; need tuning of several parameters or rely on ad-hoc constraints. Furthermore, none of these methods present a model for the cortical extrinsic connectivity. To tackle these problems, we propose a parsimonious model for the extrinsic con-nectivity and an efficient parcellation technique based on clustering of tractograms. Our technique allows the creation of single subject and groupwise parcellations of the whole cortex. The parcellations obtained with our technique are in agreement with anatomical and functional par-cellations in the literature. In particular, the motor and sensory cortex are subdivided in agreement with the human homunculus of Penfield. We illustrate this by comparing our resulting parcels with an anatomical atlas and the motor strip mapping included in the Human Connectome Project data

    Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging

    Get PDF
    Subtle changes in white matter (WM) microstructure have been associated with normal aging and neurodegeneration. To study these associations in more detail, it is highly important that the WM tracts can be accurately and reproducibly characterized from brain diffusion MRI. In addition, to enable analysis of WM tracts in large datasets and in clinical practice it is essential to have methodology that is fast and easy to apply. This work therefore presents a new approach for WM tract segmentation: Neuro4Neuro, that is capable of direct extraction of WM tracts from diffusion tensor images using convolutional neural network (CNN). This 3D end-to-end method is trained to segment 25 WM tracts in aging individuals from a large population-based study (N=9752, 1.5T MRI). The proposed method showed good segmentation performance and high reproducibility, i.e., a high spatial agreement (Cohen's kappa, k = 0.72 ~ 0.83) and a low scan-rescan error in tract-specific diffusion measures (e.g., fractional anisotropy: error = 1% ~ 5%). The reproducibility of the proposed method was higher than that of a tractography-based segmentation algorithm, while being orders of magnitude faster (0.5s to segment one tract). In addition, we showed that the method successfully generalizes to diffusion scans from an external dementia dataset (N=58, 3T MRI). In two proof-of-principle experiments, we associated WM microstructure obtained using the proposed method with age in a normal elderly population, and with disease subtypes in a dementia cohort. In concordance with the literature, results showed a widespread reduction of microstructural organization with aging and substantial group-wise microstructure differences between dementia subtypes. In conclusion, we presented a highly reproducible and fast method for WM tract segmentation that has the potential of being used in large-scale studies and clinical practice.Comment: Preprint to be published in NeuroImag

    Neural function in DCC

    No full text

    Supervised classification of white matter fibers based on neighborhood fiber orientation distributions using an ensemble of neural networks

    No full text
    White matter fibers constitute the main information transfer network of the brain and their accurate digital representation and classification is an important goal of neuroscience image computing. In current clinical practice, the reconstruction of desired fibers generally involves manual selection of regions of interest by an expert, which is time-consuming and subject to user bias, expertise and fatigue. Hence, automation of the process is desired. To that end, we propose a supervised classification approach that utilizes an ensemble of neural networks. Each streamline is represented by the fiber orientation distributions in its neighborhood, while the resolved fiber orientations are obtained by generalized q-sampling imaging (GQI) and a subsequent diffusion decomposition method. In order to make the supervised fiber classification succeed in a real scenario where a substantial portion of reconstructed fiber tracts contain spurious fibers, we present a way to create an “invalid” class label through a dedicated training set creation scheme with an ensemble of networks. The performance of the proposed classification method is demonstrated on major fiber pathways in the brainstem. 30 subjects from Human Connectome Project (HCP)’s publicly available “WU-Minn 500 Subjects + MEG2 dataset” are used as the dataset
    • 

    corecore