5 research outputs found
Recommended from our members
Endocrine-Sensitive Disease Rate in Postmenopausal Patients With Estrogen Receptor–Rich/ERBB2-Negative Breast Cancer Receiving Neoadjuvant Anastrozole, Fulvestrant, or Their Combination: A Phase 3 Randomized Clinical Trial
Importance: Adding fulvestrant to anastrozole (A+F) improved survival in postmenopausal women with advanced estrogen receptor (ER)–positive/ERBB2 (formerly HER2)–negative breast cancer. However, the combination has not been tested in early-stage disease. Objective: To determine whether neoadjuvant fulvestrant or A+F increases the rate of pathologic complete response or ypT1-2N0/N1mic/Ki67 2.7% or less residual disease (referred to as endocrine-sensitive disease) over anastrozole alone. Design, Setting, and Participants: A phase 3 randomized clinical trial assessing differences in clinical and correlative outcomes between each of the fulvestrant-containing arms and the anastrozole arm. Postmenopausal women with clinical stage II to III, ER-rich (Allred score 6-8 or >66%)/ERBB2-negative breast cancer were included. All analyses were based on data frozen on March 2, 2023. Interventions: Patients received anastrozole, fulvestrant, or a combination for 6 months preoperatively. Tumor Ki67 was assessed at week 4 and optionally at week 12, and if greater than 10% at either time point, the patient switched to neoadjuvant chemotherapy or immediate surgery. Main Outcomes and Measures: The primary outcome was the endocrine-sensitive disease rate (ESDR). A secondary outcome was the percentage change in Ki67 after 4 weeks of neoadjuvant endocrine therapy (NET) (week 4 Ki67 suppression). Results: Between February 2014 and November 2018, 1362 female patients (mean [SD] age, 65.0 [8.2] years) were enrolled. Among the 1298 evaluable patients, ESDRs were 18.7% (95% CI, 15.1%-22.7%), 22.8% (95% CI, 18.9%-27.1%), and 20.5% (95% CI, 16.8%-24.6%) with anastrozole, fulvestrant, and A+F, respectively. Compared to anastrozole, neither fulvestrant-containing regimen significantly improved ESDR or week 4 Ki67 suppression. The rate of week 4 or week 12 Ki67 greater than 10% was 25.1%, 24.2%, and 15.7% with anastrozole, fulvestrant, and A+F, respectively. Pathologic complete response/residual cancer burden class I occurred in 8 of 167 patients and 17 of 167 patients, respectively (15.0%; 95% CI, 9.9%-21.3%), after switching to neoadjuvant chemotherapy due to week 4 or week 12 Ki67 greater than 10%. PAM50 subtyping derived from RNA sequencing of baseline biopsies available for 753 patients (58%) identified 394 luminal A, 304 luminal B, and 55 nonluminal tumors. A+F led to a greater week 4 Ki67 suppression than anastrozole alone in luminal B tumors (median [IQR], −90.4% [−95.2 to −81.9%] vs −76.7% [−89.0 to −55.6%]; P  Conclusions and Relevance: In this randomized clinical trial, neither fulvestrant nor A+F significantly improved the 6-month ESDR over anastrozole in ER-rich/ERBB2-negative breast cancer. Aromatase inhibition remains the standard-of-care NET. Differential NET response by PAM50 subtype in exploratory analyses warrants further investigation. Trial Registration: ClinicalTrials.gov Identifier: NCT01953588</p
Randomized Phase II Neoadjuvant Comparison Between Letrozole, Anastrozole and Exemestane for Postmenopausal Women With Estrogen Receptor-Rich Stage 2 to 3 Breast Cancer: Clinical and Biomarker Outcomes and Predictive Value of the Baseline PAM50-Based Intrinsic Subtype -ACOSOG Z1031
PURPOSE: Preoperative aromatase inhibitor (AI) treatment promotes breast-conserving surgery (BCS) for estrogen receptor (ER)-positive breast cancer. To study this treatment option, responses to three AIs were compared in a randomized phase II neoadjuvant trial designed to select agents for phase III investigations. PATIENTS AND METHODS: Three hundred seventy-seven postmenopausal women with clinical stage II to III ER-positive (Allred score 6-8) breast cancer were randomly assigned to receive neoadjuvant exemestane, letrozole, or anastrozole. The primary end point was clinical response. Secondary end points included BCS, Ki67 proliferation marker changes, the Preoperative Endocrine Prognostic Index (PEPI), and PAM50-based intrinsic subtype analysis. RESULTS: On the basis of clinical response rates, letrozole and anastrozole were selected for further investigation; however, no other differences in surgical outcome, PEPI score, or Ki67 suppression were detected. The BCS rate for mastectomy-only patients at presentation was 51%. PAM50 analysis identified AI-unresponsive nonluminal subtypes (human epidermal growth factor receptor 2 enriched or basal-like) in 3.3% of patients. Clinical response and surgical outcomes were similar in luminal A (LumA) versus luminal B tumors; however, a PEPI of 0 (best prognostic group) was highest in the LumA subset (27.1% v 10.7%; P = .004). CONCLUSION: Neoadjuvant AI treatment markedly improved surgical outcomes. Ki67 and PEPI data demonstrated that the three agents tested are biologically equivalent and therefore likely to have similar adjuvant activities. LumA tumors were more likely to have favorable biomarker characteristics after treatment; however, occasional paradoxical increases in Ki67 (12% of tumors with > 5% increase after therapy) suggest treatment-resistant cells, present in some LumA tumors, can be detected by post-treatment profiling
Randomized Phase II Neoadjuvant Comparison Between Letrozole, Anastrozole, and Exemestane for Postmenopausal Women With Estrogen Receptor–Rich Stage 2 to 3 Breast Cancer: Clinical and Biomarker Outcomes and Predictive Value of the Baseline PAM50-Based Intrinsic Subtype—ACOSOG Z1031
PURPOSE: Preoperative aromatase inhibitor (AI) treatment promotes breast-conserving surgery (BCS) for estrogen receptor (ER)-positive breast cancer. To study this treatment option, responses to three AIs were compared in a randomized phase II neoadjuvant trial designed to select agents for phase III investigations. PATIENTS AND METHODS: Three hundred seventy-seven postmenopausal women with clinical stage II to III ER-positive (Allred score 6-8) breast cancer were randomly assigned to receive neoadjuvant exemestane, letrozole, or anastrozole. The primary end point was clinical response. Secondary end points included BCS, Ki67 proliferation marker changes, the Preoperative Endocrine Prognostic Index (PEPI), and PAM50-based intrinsic subtype analysis. RESULTS: On the basis of clinical response rates, letrozole and anastrozole were selected for further investigation; however, no other differences in surgical outcome, PEPI score, or Ki67 suppression were detected. The BCS rate for mastectomy-only patients at presentation was 51%. PAM50 analysis identified AI-unresponsive nonluminal subtypes (human epidermal growth factor receptor 2 enriched or basal-like) in 3.3% of patients. Clinical response and surgical outcomes were similar in luminal A (LumA) versus luminal B tumors; however, a PEPI of 0 (best prognostic group) was highest in the LumA subset (27.1% v 10.7%; P = .004). CONCLUSION: Neoadjuvant AI treatment markedly improved surgical outcomes. Ki67 and PEPI data demonstrated that the three agents tested are biologically equivalent and therefore likely to have similar adjuvant activities. LumA tumors were more likely to have favorable biomarker characteristics after treatment; however, occasional paradoxical increases in Ki67 (12% of tumors with > 5% increase after therapy) suggest treatment-resistant cells, present in some LumA tumors, can be detected by post-treatment profiling
Recommendations for standardized pathological characterization of residual disease for neoadjuvant clinical trials of breast cancer by the BIG-NABCG collaboration
Neoadjuvant systemic therapy (NAST) provides the unique opportunity to assess response to treatment after months rather than years of follow-up. However, significant variability exists in methods of pathologic assessment of response to NAST, and thus its interpretation for subsequent clinical decisions. Our international multidisciplinary working group was convened by the Breast International Group-North American Breast Cancer Group (BIG-NABCG) collaboration and tasked to recommend practical methods for standardized evaluation of the post-NAST surgical breast cancer specimen for clinical trials that promote accurate and reliable designation of pathologic complete response (pCR) and meaningful characterization of residual disease. Recommendations include multidisciplinary communication; clinical marking of the tumor site (clips); and radiologic, photographic, or pictorial imaging of the sliced specimen, to map the tissue sections and reconcile macroscopic and microscopic findings. The information required to define pCR (ypT0/is ypN0 or ypT0 yp N0), residual ypT and ypN stage using the current AJCC/UICC system, and the Residual Cancer Burden system were recommended for quantification of residual disease in clinical trials
Whole-genome analysis informs breast cancer response to aromatase inhibition
To correlate the variable clinical features of estrogen receptor positive (ER+) breast cancer with somatic alterations, we studied pre-treatment tumour biopsies accrued from patients in a study of neoadjuvant aromatase inhibitor (AI) therapy by massively parallel sequencing and analysis. Eighteen significantly mutated genes were identified, including five genes (RUNX1, CBFB, MYH9, MLL3 and SF3B1) previously linked to hematopoietic disorders. Mutant MAP3K1 was associated with Luminal A status, low grade histology and low proliferation rates whereas mutant TP53 associated with the opposite pattern. Moreover, mutant GATA3 correlated with suppression of proliferation upon AI treatment. Pathway analysis demonstrated mutations in MAP2K4, a MAP3K1 substrate, produced similar perturbations as MAP3K1 loss. Distinct phenotypes in ER+ breast cancer are associated with specific patterns of somatic mutations that map into cellular pathways linked to tumor biology but most recurrent mutations are relatively infrequent. Prospective clinical trials based on these findings will require comprehensive genome sequencing