46 research outputs found
Annotating Synapses in Large EM Datasets
Reconstructing neuronal circuits at the level of synapses is a central
problem in neuroscience and becoming a focus of the emerging field of
connectomics. To date, electron microscopy (EM) is the most proven technique
for identifying and quantifying synaptic connections. As advances in EM make
acquiring larger datasets possible, subsequent manual synapse identification
({\em i.e.}, proofreading) for deciphering a connectome becomes a major time
bottleneck. Here we introduce a large-scale, high-throughput, and
semi-automated methodology to efficiently identify synapses. We successfully
applied our methodology to the Drosophila medulla optic lobe, annotating many
more synapses than previous connectome efforts. Our approaches are extensible
and will make the often complicated process of synapse identification
accessible to a wider-community of potential proofreaders
A connectome and analysis of the adult Drosophila central brain.
The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly's brain