8,907 research outputs found
AN INTRASEASONAL BIOECONOMIC MODEL OF PLRV NET NECROSIS
A bioeconomic model is developed as an IPM planning tool to combat PLRV net necrosis in the PNW potato industry. Environmental/biological and production processes are linked to marketing activities using discrete time control. We find that pesticides can be optimally timed to reduce applications and still protect against net necrosis.Crop Production/Industries, Environmental Economics and Policy,
The classical nature of nuclear spin noise near clock transitions of Bi donors in silicon
Whether a quantum bath can be approximated as classical noise is a
fundamental issue in central spin decoherence and also of practical importance
in designing noise-resilient quantum control. Spin qubits based on bismuth
donors in silicon have tunable interactions with nuclear spin baths and are
first-order insensitive to magnetic noise at so-called clock-transitions (CTs).
This system is therefore ideal for studying the quantum/classical nature of
nuclear spin baths since the qubit-bath interaction strength determines the
back-action on the baths and hence the adequacy of a classical noise model. We
develop a Gaussian noise model with noise correlations determined by quantum
calculations and compare the classical noise approximation to the full quantum
bath theory. We experimentally test our model through dynamical decoupling
sequence of up to 128 pulses, finding good agreement with simulations and
measuring electron spin coherence times approaching one second - notably using
natural silicon. Our theoretical and experimental study demonstrates that the
noise from a nuclear spin bath is analogous to classical Gaussian noise if the
back-action of the qubit on the bath is small compared to the internal bath
dynamics, as is the case close to CTs. However, far from the CTs, the
back-action of the central spin on the bath is such that the quantum model is
required to accurately model spin decoherence.Comment: 5 pages, 3 figure
Uncovering many-body correlations in nanoscale nuclear spin baths by central spin decoherence
Many-body correlations can yield key insights into the nature of interacting
systems; however, detecting them is often very challenging in many-particle
physics, especially in nanoscale systems. Here, taking a phosphorus donor
electron spin in a natural-abundance 29Si nuclear spin bath as our model
system, we discover both theoretically and experimentally that many-body
correlations in nanoscale nuclear spin baths produce identifiable signatures in
the decoherence of the central spin under multiple-pulse dynamical decoupling
control. We find that when the number of decoupling -pulses is odd, central
spin decoherence is primarily driven by second-order nuclear spin correlations
(pairwise flip-flop processes). In contrast, when the number of -pulses is
even, fourth-order nuclear spin correlations (diagonal interaction renormalized
pairwise flip-flop processes) are principally responsible for the central spin
decoherence. Many-body correlations of different orders can thus be selectively
detected by central spin decoherence under different dynamical decoupling
controls, providing a useful approach to probing many-body processes in
nanoscale nuclear spin baths
Neuroligin-1 knockdown reduces survival of adult-generated newborn hippocampal neurons
Survival of adult-born hippocampal granule cells is modulated by neural activity, and thought to be enhanced by excitatory synaptic signaling. Here, we report that a reduction in the synaptogenic protein neuroligin-1 in adult-born neurons in vivo decreased their survival, but surprisingly, this effect was independent of changes in excitatory synaptic function. Instead, the decreased survival was associated with unexpected changes in dendrite and spine morphology during granule cell maturation, suggesting a link between cell growth and survival
Birth Weights, Weaning Weights, and Average Daily Gain of Romosinuano-Sired Calves from First and Second Calving Angus X Brahman (F-1) Cows
Last updated: 6/12/200
XO-5b: A Transiting Jupiter-sized Planet With A Four Day Period
The star XO-5 (GSC 02959-00729, V=12.1, G8V) hosts a Jupiter-sized,
Rp=1.15+/-0.12 Rjup, transiting extrasolar planet, XO-5b, with an orbital
period of P=4.187732+/-0.00002 days. The planet mass (Mp=1.15+/-0.08 Mjup) and
surface gravity (gp=22+/-5 m/s^2) are significantly larger than expected by
empirical Mp-P and Mp-P-[Fe/H] relationships. However, the deviation from the
Mp-P relationship for XO-5b is not large enough to suggest a distinct type of
planet as is suggested for GJ 436b, HAT-P-2b, and XO-3b. By coincidence XO-5
overlies the extreme H I plume that emanates from the interacting galaxy pair
NGC 2444/NGC 2445 (Arp 143).Comment: 10 pages, 9 Figures, Submitted to Ap
Outpatient facility-based order variation in combined imaging.
OBJECTIVE: Combined computed tomography (CT) occurs when one anatomical area is simultaneously imaged both without and with contrast, or two overlapping anatomical areas are imaged concurrently. While this has been studied in a Traditional Medicare population, it has not been studied in other populations subject to prior authorization. This study explores between-facility variation in ordering and receiving orders to render combined CT in a mixed commercial and Medicare Advantage population.
METHODS: Orders for CT abdomen (without/with contrast), CT thorax (without/with contrast), and concurrent CT brain and sinus authorized by a prior authorization company from 2013-2017, pertaining to patients with commercial or Medicare Advantage health plans from one national insurer, were extracted. Orders were issued and rendered by both hospitals and nonhospitals. The analysis was performed separately for each anatomical area in two ways: orders were grouped by ordering facility, and by designated rendering facility. For each facility, the ratio of combined to total orders was calculated, and analysis of variance was used to determine whether there were significant differences in this rate by year. The association between health plan type and combined imaging rates was assessed.
RESULTS: Combined rates [ratio±standard deviation] for abdomen, thorax, and brain/sinus were 0.306±0.246, 0.089±0.142, and 0.002±0.01 respectively when the analysis was conducted according to ordering facility, and 0.311±0.178, 0.096±0.113, and 0.001±0.006 when the analysis was conducted according to designated rendering facility. Combined CT abdomen and CT thorax rates decreased monotonically from 2013 to 2017, decreases that were significant (P \u3c .01) regardless of whether orders were grouped by ordering or rendering facility. Combined CT abdomen and CT thorax rates significantly differed between orders pertaining to people with commercial and Medicare Advantage plans.
DISCUSSION: Variability was greater when orders were grouped by ordering facility, rather than rendering facility. Health plan type may influence whether a patient receives combined CT
- …