65 research outputs found

    Use of ultraviolet C (UVC) radiation to inactivate infectious hematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV) in fish processing plant effluent

    Full text link
    We determined the stability of infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) suspended in either fish processing plant effluent blood water (EBW) or culture media and examined the effectiveness of UVC radiation to inactivate IHNV and VHSV suspended in both solutions. Without exposure to UVC, IHNV and VHSV were maintained in 4&deg;C blood water for up to 48 hours without significant reduction in virus titer. However when exposed to UVC radiation using a low pressure mercury vapour lamp collimated beam, IHNV and VHSV were inactivated, and the efficacy of UVC radiation was dependent upon the solution and virus type being treated. A 3-log reduction for VHSV and IHNV in culture media was achieved at 3.28 and 3.84 mJ cm-2, respectively. The UV dose needed for a 3-log reduction of VHSV in EBW was 3.82 mJ cm-2. However, exposure of IHNV in EBW to the maximum UVC dose tested (4.0 mJ cm-2) only led to a 2.26-log-reduction. Factors such as particle size, and possible association of viruses with suspended EBW particulate, were not investigated in this study, but may have contributed to the difference in UVC effectiveness. Future work should emphasize improved filtration methods prior to UV treatment of processing plant EBW at an industrial scale.<br /

    High-Load Reovirus Infections Do Not Imply Physiological Impairment in Salmon

    Get PDF
    The recent ubiquitous detection of PRV among salmonids has sparked international concern about the cardiorespiratory performance of infected wild and farmed salmon. Piscine orthoreovirus (PRV) has been shown to create substantial viremia in salmon by targeting erythrocytes for principle replication. In some instances, infections develop into heart and skeletal muscle inflammation (HSMI) or other pathological conditions affecting the respiratory system. Critical to assessing the seriousness of PRV infections are controlled infection studies that measure physiological impairment to critical life support systems. Respiratory performance is such a system and here multiple indices were measured to test the hypothesis that a low-virulence strain of PRV from Pacific Canada compromises the cardiorespiratory capabilities of Atlantic salmon. Contrary to this hypothesis, the oxygen affinity and carrying capacity of erythrocytes were unaffected by PRV despite the presence of severe viremia, minor heart pathology and transient cellular activation of antiviral response pathways. Similarly, PRV-infected fish had neither sustained nor appreciable differences in respiratory capabilities compared with control fish. The lack of functional harm to salmon infected with PRV in this instance highlights that, in an era of unprecedented virus discovery, detection of viral infection does not necessarily imply bodily harm and that viral load is not always a suitable predictor of disease within a host organism

    Engineered Anopheles Immunity to Plasmodium Infection

    Get PDF
    A causative agent of human malaria, Plasmodium falciparum, is transmitted by Anopheles mosquitoes. The malaria parasite is under intensive attack from the mosquito's innate immune system during its sporogonic development. We have used genetic engineering to create immune-enhanced Anopheles stephensi mosquitoes through blood meal-inducible expression of a transgene encoding the IMD pathway-controlled NF-kB Rel2 transcription factor in the midgut and fat-body tissue. Transgenic mosquitoes showed greater resistance to Plasmodium and microbial infection as a result of timely concerted tissue-specific immune attacks involving multiple effectors. The relatively weak impact of this genetic modification on mosquito fitness under laboratory conditions encourages further investigation of this approach for malaria control

    The NANOGrav 15-year Data Set: Evidence for a Gravitational-Wave Background

    Get PDF
    We report multiple lines of evidence for a stochastic signal that is correlated among 67 pulsars from the 15-year pulsar-timing data set collected by the North American Nanohertz Observatory for Gravitational Waves. The correlations follow the Hellings-Downs pattern expected for a stochastic gravitational-wave background. The presence of such a gravitational-wave background with a power-law-spectrum is favored over a model with only independent pulsar noises with a Bayes factor in excess of 101410^{14}, and this same model is favored over an uncorrelated common power-law-spectrum model with Bayes factors of 200-1000, depending on spectral modeling choices. We have built a statistical background distribution for these latter Bayes factors using a method that removes inter-pulsar correlations from our data set, finding p=10−3p = 10^{-3} (approx. 3σ3\sigma) for the observed Bayes factors in the null no-correlation scenario. A frequentist test statistic built directly as a weighted sum of inter-pulsar correlations yields p=5×10−5−1.9×10−4p = 5 \times 10^{-5} - 1.9 \times 10^{-4} (approx. 3.5−4σ3.5 - 4\sigma). Assuming a fiducial f−2/3f^{-2/3} characteristic-strain spectrum, as appropriate for an ensemble of binary supermassive black-hole inspirals, the strain amplitude is 2.4−0.6+0.7×10−152.4^{+0.7}_{-0.6} \times 10^{-15} (median + 90% credible interval) at a reference frequency of 1/(1 yr). The inferred gravitational-wave background amplitude and spectrum are consistent with astrophysical expectations for a signal from a population of supermassive black-hole binaries, although more exotic cosmological and astrophysical sources cannot be excluded. The observation of Hellings-Downs correlations points to the gravitational-wave origin of this signal.Comment: 30 pages, 18 figures. Published in Astrophysical Journal Letters as part of Focus on NANOGrav's 15-year Data Set and the Gravitational Wave Background. For questions or comments, please email [email protected]

    Principles Underlying the Epizootiology of Viral Hemorrhagic Septicemia in Pacific Herring and other Fishes throughout the North Pacific Ocean

    No full text
    Although viral hemorrhagic septicemia virus (VHSV) typically occurs at low prevalence and intensity in natural populations of Pacific herring (Clupea pallasii) and other marine fishes in the NE Pacific Ocean, epizootics of the resulting disease (VHS) periodically occur, often in association with observed fish kills. Here we identify a list of principles, based on a combination of field studies, controlled laboratory experiments, and previously un-published observations, that govern the epizootiology of VHS in Pacific herring. A thorough understanding of these principles provides the basis for identifying risk factors that predispose certain marine fish populations to VHS epizootics; including the lack of population resistance, presence of chronic viral carriers in a population, copious viral shedding by infected individuals, cool water temperatures, limited water circulation patterns, and gregarious host behavioral patterns. Further, these principles are used to define the epizootiological stages of the disease in Pacific herring, including the susceptible (where susceptible individuals predominate a school or sub-population), enzootic (where infection prevalence and intensity are often below the limits of reasonable laboratory detection), disease amplification (where infection prevalence and intensity increase rapidly), outbreak (often accompanied by host mortalities with high virus loads and active shedding), recovery (in which the mortality rate and virus load decline due to an active host immune response) and refractory stages (characterized by little or no susceptibility and where viral clearance occurs in most VHS survivors). In addition to providing a foundation for quantitatively assessing the potential risks of future VHS epizootics in Pacific herring, these principles provide insights into the epizootiology of VHS in other fish communities where susceptible species exist.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Pan-Piscine Orthoreovirus (PRV) Detection Using Reverse Transcription Quantitative PCR

    No full text
    Piscine orthoreovirus (PRV) infects farmed and wild salmon and trout species in North America, South America, Europe, and East Asia. PRV groups into three distinct genotypes (PRV-1, PRV-2, and PRV-3) that can vary in distribution, host specificity, and/or disease potential. Detection of the virus is currently restricted to genotype specific assays such that surveillance programs require the use of three assays to ensure universal detection of PRV. Consequently, herein, we developed, optimized, and validated a real-time reverse transcription quantitative PCR assay (RT-qPCR) that can detect all known PRV genotypes with high sensitivity and specificity. Targeting a conserved region at the 5′ terminus of the M2 segment, the pan-PRV assay reliably detected all PRV genotypes with as few as five copies of RNA. The assay exclusively amplifies PRV and does not cross-react with other salmonid viruses or salmonid host genomes and can be performed as either a one- or two-step RT-qPCR. The assay is highly reproducible and robust, showing 100% agreement in test results from an inter-laboratory comparison between two laboratories in two countries. Overall, as the assay provides a single test to achieve highly sensitive pan-specific PRV detection, it is suitable for research, diagnostic, and surveillance purposes

    Estimation of parameters influencing waterborne transmission of infectious hematopoietic necrosis virus (IHNV) in Atlantic salmon (Salmo salar).

    Get PDF
    Understanding how pathogenic organisms spread in the environment is crucial for the management of disease, yet knowledge of propagule dispersal and transmission in aquatic environments is limited. We conducted empirical studies using the aquatic virus, infectious hematopoietic necrosis virus (IHNV), to quantify infectious dose, shedding capacity, and virus destruction rates in order to better understand the transmission of IHN virus among Atlantic salmon marine net-pen aquaculture. Transmission of virus and subsequent mortality in Atlantic salmon post-smolts was initiated with as low as 10 plaque forming units (pfu) ml(-1). Virus shedding from IHNV infected Atlantic salmon was detected before the onset of visible signs of disease with peak shed rates averaging 3.2 × 10(7) pfu fish(-1) hour(-1) one to two days prior to mortality. Once shed into the marine environment, the abundance of free IHNV is modulated by sunlight (UV A and B) and the growth of natural biota present in the seawater. Virus decayed very slowly in sterilized seawater while rates as high as k =  4.37 d(-1) were observed in natural seawater. Decay rates were further accelerated when exposed to sunlight with virus infectivity reduced by six orders of magnitude within 3 hours of full sunlight exposure. Coupling the IHNV transmission parameter estimates determined here with physical water circulation models, will increase the understanding of IHNV dispersal and provide accurate geospatial predictions of risk for IHNV transmission from marine salmon sites
    • …
    corecore