253 research outputs found
Design of a novel flow-and-shoot microbeam
Presented here is a novel microbeam technology—the Flow-And-ShooT (FAST) microbeam—under development at RARAF. In this system, cells undergo controlled fluidic transport along a microfluidic channel intersecting the microbeam path. They are imaged and tracked in real-time, using a high-speed camera and dynamically targeted, using a magnetic Point and Shoot system. With the proposed FAST system, RARAF expects to reach a throughput of 100 000 cells per hour, which will allow increasing the throughput of experiments by at least one order of magnitude. The implementation of FAST will also allow the irradiation of non-adherent cells (e.g. lymphocytes), which is of great interest to many of the RARAF users. This study presents the design of a FAST microbeam and results of first tests of imaging and tracking as well as a discussion of the achievable throughput
Regulation of the Na,K-ATPase Gamma-Subunit FXYD2 by Runx1 and Ret Signaling in Normal and Injured Non-Peptidergic Nociceptive Sensory Neurons
Dorsal root ganglia (DRGs) contain the cell bodies of sensory neurons which relay nociceptive, thermoceptive, mechanoceptive and proprioceptive information from peripheral tissues toward the central nervous system. These neurons establish constant communication with their targets which insures correct maturation and functioning of the somato-sensory nervous system. Interfering with this two-way communication leads to cellular, electrophysiological and molecular modifications that can eventually cause neuropathic conditions. In this study we reveal that FXYD2, which encodes the gamma-subunit of the Na,K-ATPase reported so far to be mainly expressed in the kidney, is induced in the mouse DRGs at postnatal stages where it is restricted specifically to the TrkB-expressing mechanoceptive and Ret-positive/IB4-binding non-peptidergic nociceptive neurons. In non-peptidergic nociceptors, we show that the transcription factor Runx1 controls FXYD2 expression during the maturation of the somato-sensory system, partly through regulation of the tyrosine kinase receptor Ret. Moreover, Ret signaling maintains FXYD2 expression in adults as demonstrated by the axotomy-induced down-regulation of the gene that can be reverted by in vivo delivery of GDNF family ligands. Altogether, these results establish FXYD2 as a specific marker of defined sensory neuron subtypes and a new target of the Ret signaling pathway during normal maturation of the non-peptidergic nociceptive neurons and after sciatic nerve injury
Modulation of epithelial sodium channel (ENaC) expression in mouse lung infected with Pseudomonas aeruginosa
BACKGROUND: The intratracheal instillation of Pseudomonas aeruginosa entrapped in agar beads in the mouse lung leads to chronic lung infection in susceptible mouse strains. As the infection generates a strong inflammatory response with some lung edema, we tested if it could modulate the expression of genes involved in lung liquid clearance, such as the α, β and γ subunits of the epithelial sodium channel (ENaC) and the catalytic subunit of Na(+)-K(+)-ATPase. METHODS: Pseudomonas aeruginosa entrapped in agar beads were instilled in the lung of resistant (BalB/c) and susceptible (DBA/2, C57BL/6 and A/J) mouse strains. The mRNA expression of ENaC and Na(+)-K(+)-ATPase subunits was tested in the lung by Northern blot following a 3 hours to 14 days infection. RESULTS: The infection of the different mouse strains evoked regulation of α and β ENaC mRNA. Following Pseudomonas instillation, the expression of αENaC mRNA decreased to a median of 43% on days 3 and 7 after infection and was still decreased to a median of 45% 14 days after infection (p < 0.05). The relative expression of βENaC mRNA was transiently increased to a median of 241%, 24 h post-infection before decreasing to a median of 43% and 54% of control on days 3 and 7 post-infection (p < 0.05). No significant modulation of γENaC mRNA was detected although the general pattern of expression of the subunit was similar to α and β subunits. No modulation of α(1)Na(+)-K(+)-ATPase mRNA, the catalytic subunit of the sodium pump, was recorded. The distinctive expression profiles of the three subunits were not different, between the susceptible and resistant mouse strains. CONCLUSIONS: These results show that Pseudomonas infection, by modulating ENaC subunit expression, could influence edema formation and clearance in infected lungs
Amiloride-sensitive channels in type I fungiform taste cells in mouse
<p>Abstract</p> <p>Background</p> <p>Taste buds are the sensory organs of taste perception. Three types of taste cells have been described. Type I cells have voltage-gated outward currents, but lack voltage-gated inward currents. These cells have been presumed to play only a support role in the taste bud. Type II cells have voltage-gated Na<sup>+ </sup>and K<sup>+ </sup>current, and the receptors and transduction machinery for bitter, sweet, and umami taste stimuli. Type III cells have voltage-gated Na<sup>+</sup>, K<sup>+</sup>, and Ca<sup>2+ </sup>currents, and make prominent synapses with afferent nerve fibers. Na<sup>+ </sup>salt transduction in part involves amiloride-sensitive epithelial sodium channels (ENaCs). In rodents, these channels are located in taste cells of fungiform papillae on the anterior part of the tongue innervated by the chorda tympani nerve. However, the taste cell type that expresses ENaCs is not known. This study used whole cell recordings of single fungiform taste cells of transgenic mice expressing GFP in Type II taste cells to identify the taste cells responding to amiloride. We also used immunocytochemistry to further define and compare cell types in fungiform and circumvallate taste buds of these mice.</p> <p>Results</p> <p>Taste cell types were identified by their response to depolarizing voltage steps and their presence or absence of GFP fluorescence. TRPM5-GFP taste cells expressed large voltage-gated Na<sup>+ </sup>and K<sup>+ </sup>currents, but lacked voltage-gated Ca<sup>2+ </sup>currents, as expected from previous studies. Approximately half of the unlabeled cells had similar membrane properties, suggesting they comprise a separate population of Type II cells. The other half expressed voltage-gated outward currents only, typical of Type I cells. A single taste cell had voltage-gated Ca<sup>2+ </sup>current characteristic of Type III cells. Responses to amiloride occurred only in cells that lacked voltage-gated inward currents. Immunocytochemistry showed that fungiform taste buds have significantly fewer Type II cells expressing PLC signalling components, and significantly fewer Type III cells than circumvallate taste buds.</p> <p>Conclusion</p> <p>The principal finding is that amiloride-sensitive Na<sup>+ </sup>channels appear to be expressed in cells that lack voltage-gated inward currents, likely the Type I taste cells. These cells were previously assumed to provide only a support function in the taste bud.</p
VADER: a variable dose-rate external 137Cs irradiator for internal emitter and low dose rate studies.
In the long term, 137Cs is probably the most biologically important agent released in many accidental (or malicious) radiation disasters. It can enter the food chain, and be consumed, or, if present in the environment (e.g. from fallout), can provide external irradiation over prolonged times. In either case, due to the high penetration of the energetic γ rays emitted by 137Cs, the individual will be exposed to a low dose rate, uniform, whole body, irradiation. The VADER (VAriable Dose-rate External 137Cs irradiatoR) allows modeling these exposures, bypassing many of the problems inherent in internal emitter studies. Making use of discarded 137Cs brachytherapy seeds, the VADER can provide varying low dose rate irradiations at dose rates of 0.1 to 1.2 Gy/day. The VADER includes a mouse "hotel", designed to allow long term simultaneous residency of up to 15 mice. Two source platters containing ~ 250 mCi each of 137Cs brachytherapy seeds are mounted above and below the "hotel" and can be moved under computer control to provide constant low dose rate or a varying dose rate mimicking 137Cs biokinetics in mouse or man. We present the VADER design and characterization of its performance over 18 months of use
Substrate Specificity within a Family of Outer Membrane Carboxylate Channels
Characterization of a large family of outer membrane channels from gram-negative bacteria suggest how they can thrive in nutrient-poor environments and how channel inactivation can contribute to antibiotic resistance
Cerebellar gene expression profiles of mouse models for Rett syndrome reveal novel MeCP2 targets
<p>Abstract</p> <p>Background</p> <p>MeCP2, methyl-CpG-binding protein 2, binds to methylated cytosines at CpG dinucleotides, as well as to unmethylated DNA, and affects chromatin condensation. <it>MECP2 </it>mutations in females lead to Rett syndrome, a neurological disorder characterized by developmental stagnation and regression, loss of purposeful hand movements and speech, stereotypic hand movements, deceleration of brain growth, autonomic dysfunction and seizures. Most mutations occur <it>de novo </it>during spermatogenesis. Located at Xq28, <it>MECP2 </it>is subject to X inactivation, and affected females are mosaic. Rare hemizygous males suffer from a severe congenital encephalopathy.</p> <p>Methods</p> <p>To identify the pathways mis-regulated by MeCP2 deficiency, microarray-based global gene expression studies were carried out in cerebellum of <it>Mecp2 </it>mutant mice. We compared transcript levels in mutant/wildtype male sibs of two different MeCP2-deficient mouse models at 2, 4 and 8 weeks of age. Increased transcript levels were evaluated by real-time quantitative RT-PCR. Chromatin immunoprecipitation assays were used to document <it>in vivo </it>MeCP2 binding to promoter regions of candidate target genes.</p> <p>Results</p> <p>Of several hundred genes with altered expression levels in the mutants, twice as many were increased than decreased, and only 27 were differentially expressed at more than one time point. The number of misregulated genes was 30% lower in mice with the exon 3 deletion (<it>Mecp2</it><sup>tm1.1Jae</sup>) than in mice with the larger deletion (<it>Mecp2</it><sup>tm1.1Bird</sup>). Between the mutants, few genes overlapped at each time point. Real-time quantitative RT-PCR assays validated increased transcript levels for four genes: <it>Irak1</it>, interleukin-1 receptor-associated kinase 1; <it>Fxyd1</it>, phospholemman, associated with Na, K-ATPase;<it>Reln</it>, encoding an extracellular signaling molecule essential for neuronal lamination and synaptic plasticity; and <it>Gtl2/Meg3</it>, an imprinted maternally expressed non-translated RNA that serves as a host gene for C/D box snoRNAs and microRNAs. Chromatin immunoprecipitation assays documented <it>in vivo </it>MeCP2 binding to promoter regions of <it>Fxyd1, Reln</it>, and <it>Gtl2</it>.</p> <p>Conclusion</p> <p>Transcriptional profiling of cerebellum failed to detect significant global changes in <it>Mecp2</it>-mutant mice. Increased transcript levels of <it>Irak1, Fxyd1, Reln</it>, and <it>Gtl2 </it>may contribute to the neuronal dysfunction in MeCP2-deficient mice and individuals with Rett syndrome. Our data provide testable hypotheses for future studies of the regulatory or signaling pathways that these genes act on.</p
An ultrasoft X-ray multi-microbeam irradiation system for studies of DNA damage responses by fixed- and live-cell fluorescence microscopy
Localized induction of DNA damage is a valuable tool for studying cellular DNA damage responses. In recent decades, methods have been developed to generate DNA damage using radiation of various types, including photons and charged particles. Here we describe a simple ultrasoft X-ray multi-microbeam system for high dose-rate, localized induction of DNA strand breaks in cells at spatially and geometrically adjustable sites. Our system can be combined with fixed- and live-cell microscopy to study responses of cells to DNA damage
Maternal Immunization with Pneumococcal Surface Protein A Protects against Pneumococcal Infections among Derived Offspring
Pathogen-specific antibody plays an important role in protection against pneumococcal carriage and infections. However, neonates and infants exhibit impaired innate and adaptive immune responses, which result in their high susceptibility to pneumococci. To protect neonates and infants against pneumococcal infection it is important to elicit specific protective immune responses at very young ages. In this study, we investigated the protective immunity against pneumococcal carriage, pneumonia, and sepsis induced by maternal immunization with pneumococcal surface protein A (PspA). Mother mice were intranasally immunized with recombinant PspA (rPspA) and cholera toxin B subunit (CTB) prior to being mated. Anti-PspA specific IgG, predominantly IgG1, was present at a high level in the serum and milk of immunized mothers and in the sera of their pups. The pneumococcal densities in washed nasal tissues and in lung homogenate were significantly reduced in pups delivered from and/or breast-fed by PspA-immunized mothers. Survival after fatal systemic infections with various types of pneumococci was significantly extended in the pups, which had received anti-PspA antibody via the placenta or through their milk. The current findings strongly suggest that maternal immunization with PspA is an attractive strategy against pneumococcal infections during early childhood. (191 words
- …