3 research outputs found

    Sediment generation from forest roads: Bed and eroded sediment size distributions, and runoff management strategies

    Get PDF
    A rainfall simulator and overland flow study was conducted to determine in situ and eroded sediment size distributions for a range of forest road surfaces at 2 important commercial plantation centres in subtropical south-east Queensland, Australia; and parameters necessary for running the CREAMS model to assess erosion and sediment transport from road/table drain systems. Results revealed very low concentrations of fine particles in the surface of gravel roads, and somewhat higher proportions in ungravelled (dirt) road surfaces. However, there was considerable enrichment of fine particles in sediment eroded under simulated rain, with concentrations of particles <0 . 02 mm in diameter being up to 8 g/L. Table drains were generally resistant to scour by overland flows, with the only exception being a drain bordering a newly gravelled road. This drain was bare of vegetation and contained significant quantities of loose gravel from which the fine component was easily eroded. It demonstrated the need to construct both roads and table drains at the end of the wet season when consolidation and re-vegetation can occur under lighter rains during the dry season. CREAMS model runs for a ‘standard’ road and drain configuration predicted considerable enrichment of fine particles in sediment from all road surfaces. The major factor controlling predicted concentrations of fine particles was the rate of erosion from the road surface, with gravelled surfaces showing considerably less erosion than ungravelled surfaces. Because road surfaces will be significant sources of fine sediment during erosive rains, a second part of this study was designed to model whether hillslopes could be used to infiltrate runoff, thereby controlling sediment movement. For the modelled hillslopes—typical of those used to support commercial forest plantations in south-east Queensland—design runoffs from forest road turn-out drains could be infiltrated. It is suggested that forest managers use hillslope infiltration as the primary tool for managing flows and sediments from road turn-out drains, and that vegetative filter strips be used only as a secondary support tool

    Vegetative filter strips to control sediment movement in forest plantations: Validation of a simple model using field data

    Get PDF
    A field study of sediment movement through vegetative barriers was carried out to assess the sediment-trapping effectiveness of vegetative barrier types typically used in forest forest plantation management in south-east Queensland, Australia, and to develop a simple methodology for predicting sediment movement through these barriers. For sites at the centre of Queensland's 110 000 ha Pinus plantation and 45 000 ha Araucaria plantation program, small field flumes (plots) were established on a range of vegetation types and slope gradients, and sediment-laden flows passed through them. Sediment trapping in the plots was assessed by comparing paired samples taken from the inlet and outlet of the plots at pre-determined sampling times. Measurements included total sediment and equivalent size distributions of sediment particles (the latter measurements being based on settling velocities). For plots that did not erode, the degree of sediment trapping, if based on total sediment only, was quite variable. However, if rates of transport were considered in terms of the various size fractions, results were very consistent. A simple conceptual approach equating the vegetated area to a sedimentation pond allowed deposition to be calculated on the basis of settling velocity, flow depth, and residence time within the vegetated area. Estimated transport rates of sediment through the vegetated areas were in close agreement with measured transport rates, confirming the eciency of this approach. The results highlight a number of issues for management of sediment movement from forest estates
    corecore