1 research outputs found

    Improving harmonization and standardization of expanded newborn screening results by optimization of the legacy flow injection analysis tandem mass spectrometry methods and application of a standardized calibration approach

    Get PDF
    Background Newborn screening (NBS) laboratories in the United Kingdom adhere to common protocols based on single analyte cutoff values (COVs); therefore, interlaboratory harmonization is of paramount importance. Interlaboratory variation for screening analytes in UK NBS laboratories ranges from 17% to 59%. While using common stable isotope internal standards has been shown to significantly reduce interlaboratory variation, instrument set-up, sample extraction, and calibration approach are also key factors. Methods Dried blood spot (DBS) extraction processes, instrument set-up, mobile-phase composition, sample introduction technique, and calibration approach of flow injection analysis–tandem mass spectrometry (FIA-MS/MS) methods were optimized. Inter- and intralaboratory variation of methionine, leucine, phenylalanine, tyrosine, isovaleryl-carnitine, glutaryl-carnitine, octanoyl-carnitine, and decanoyl-carnitine were determined pre- and postoptimization, using 3 different calibration approaches. Results Optimal recovery of analytes from DBS was achieved with a 35-min extraction time and 80% methanol (150 μL). Optimized methodology decreased the mean intralaboratory percentage relative SD (%RSD) for the 8 analytes from 20.7% (range 4.1–46.0) to 5.4% (range 3.0–8.5). The alternative calibration approach reduced the mean interlaboratory %RSD for all analytes from 16.8% (range 4.1–25.0) to 7.1% (range 4.1–11.0). Nuclear magnetic resonance analysis of the calibration material highlighted the need for standardization. The purities of isovaleryl-carnitine and glutaryl-carnitine were 85.13% and 69.94% respectively, below the manufacturer’s stated values of ≥98%. Conclusions For NBS programs provided by multiple laboratories using single analyte COVs, harmonization and standardization of results can be achieved by optimizing legacy FIA-MS/MS methods, adopting a common analytical protocol, and using standardized calibration material rather than internal calibration
    corecore