299 research outputs found
QAA subject benchmark statement architecture : version for consultation December 2019
The Statement is intended to guide lecturers and course leaders in the design of academic courses leading to qualifications in architecture, it will also be useful to those developing other related courses.
Higher education providers may need to consider other reference points in addition to this Statement in designing, delivering and reviewing courses. These may include requirements set out by the Architects Registration Board (ARB), the Royal Institute of British Architects (RIBA) and the Institute for Apprenticeships and Technical Education (IfATE). Providers may also need to consider industry or employer expectations. Individual higher education providers will decide how they use this information.
The broad subject of architecture is both academic and vocational. The bachelor's award for architecture is the first stage of the typical education of an architect. This is typically either a BSc or a BA degree. The second stage of academic qualification is a master's level degree, typically in the form of a two-year MArch, which is defined as an undergraduate master's award.
Architecture qualifications typically require a total of 360 (Credit Accumulation and Transfer Scheme, or CATS) credits at bachelor's level and 240 (CATS) credits within a master's level degree. While this may equate to five years of 120 (CATS) credits each, higher education providers may construct alternatives to enable flexibility in student learning.
This Statement seeks to encapsulate the nature of a rich and diverse academic discipline. It is not intended to prescribe a curriculum, but rather describes the broad intellectual territory within which individual higher education providers will locate their courses of study in architecture
Funnels in Energy Landscapes
Local minima and the saddle points separating them in the energy landscape
are known to dominate the dynamics of biopolymer folding. Here we introduce a
notion of a "folding funnel" that is concisely defined in terms of energy
minima and saddle points, while at the same time conforming to a notion of a
"folding funnel" as it is discussed in the protein folding literature.Comment: 6 pages, 3 figures, submitted to European Conference on Complex
Systems 200
Proteinlike behavior of a spin system near the transition between ferromagnet and spin glass
A simple spin system is studied as an analog for proteins. We investigate how
the introduction of randomness and frustration into the system effects the
designability and stability of ground state configurations. We observe that the
spin system exhibits protein-like behavior in the vicinity of the transition
between ferromagnet and spin glass.
Our results illuminate some guiding principles in protein evolution.Comment: 12 pages, 4 figure
Phonons in a one-dimensional microfluidic crystal
The development of a general theoretical framework for describing the
behaviour of a crystal driven far from equilibrium has proved difficult1.
Microfluidic crystals, formed by the introduction of droplets of immiscible
fluid into a liquid-filled channel, provide a convenient means to explore and
develop models to describe non-equilibrium dynamics2, 3, 4, 5, 6, 7, 8, 9, 10,
11. Owing to the fact that these systems operate at low Reynolds number (Re),
in which viscous dissipation of energy dominates inertial effects, vibrations
are expected to be over-damped and contribute little to their dynamics12, 13,
14. Against such expectations, we report the emergence of collective normal
vibrational modes (equivalent to acoustic 'phonons') in a one-dimensional
microfluidic crystal of water-in-oil droplets at Reapprox10-4. These phonons
propagate at an ultra-low sound velocity of approx100 mum s-1 and frequencies
of a few hertz, exhibit unusual dispersion relations markedly different to
those of harmonic crystals, and give rise to a variety of crystal instabilities
that could have implications for the design of commercial microfluidic systems.
First-principles theory shows that these phonons are an outcome of the
symmetry-breaking flow field that induces long-range inter-droplet
interactions, similar in nature to those observed in many other systems
including dusty plasma crystals15, 16, vortices in superconductors17, 18,
active membranes19 and nucleoprotein filaments20.Comment: https://www.weizmann.ac.il/complex/tlusty/papers/NaturePhys2006.pd
Smectic blue phases: layered systems with high intrinsic curvature
We report on a construction for smectic blue phases, which have quasi-long
range smectic translational order as well as three dimensional crystalline
order. Our proposed structures fill space by adding layers on top of a minimal
surface, introducing either curvature or edge defects as necessary. We find
that for the right range of material parameters, the favorable saddle-splay
energy of these structures can stabilize them against uniform layered
structures. We also consider the nature of curvature frustration between mean
curvature and saddle-splay.Comment: 15 pages, 11 figure
Photonic band gaps in materials with triply periodic surfaces and related tubular structures
We calculate the photonic band gap of triply periodic bicontinuous cubic
structures and of tubular structures constructed from the skeletal graphs of
triply periodic minimal surfaces. The effect of the symmetry and topology of
the periodic dielectric structures on the existence and the characteristics of
the gaps is discussed. We find that the C(I2-Y**) structure with Ia3d symmetry,
a symmetry which is often seen in experimentally realized bicontinuous
structures, has a photonic band gap with interesting characteristics. For a
dielectric contrast of 11.9 the largest gap is approximately 20% for a volume
fraction of the high dielectric material of 25%. The midgap frequency is a
factor of 1.5 higher than the one for the (tubular) D and G structures
Phase transition and landscape statistics of the number partitioning problem
The phase transition in the number partitioning problem (NPP), i.e., the
transition from a region in the space of control parameters in which almost all
instances have many solutions to a region in which almost all instances have no
solution, is investigated by examining the energy landscape of this classic
optimization problem. This is achieved by coding the information about the
minimum energy paths connecting pairs of minima into a tree structure, termed a
barrier tree, the leaves and internal nodes of which represent, respectively,
the minima and the lowest energy saddles connecting those minima. Here we apply
several measures of shape (balance and symmetry) as well as of branch lengths
(barrier heights) to the barrier trees that result from the landscape of the
NPP, aiming at identifying traces of the easy/hard transition. We find that it
is not possible to tell the easy regime from the hard one by visual inspection
of the trees or by measuring the barrier heights. Only the {\it difficulty}
measure, given by the maximum value of the ratio between the barrier height and
the energy surplus of local minima, succeeded in detecting traces of the phase
transition in the tree. In adddition, we show that the barrier trees associated
with the NPP are very similar to random trees, contrasting dramatically with
trees associated with the spin-glass and random energy models. We also
examine critically a recent conjecture on the equivalence between the NPP and a
truncated random energy model
Energy landscapes, supergraphs, and "folding funnels" in spin systems
Dynamical connectivity graphs, which describe dynamical transition rates
between local energy minima of a system, can be displayed against the
background of a disconnectivity graph which represents the energy landscape of
the system. The resulting supergraph describes both dynamics and statics of the
system in a unified coarse-grained sense. We give examples of the supergraphs
for several two dimensional spin and protein-related systems. We demonstrate
that disordered ferromagnets have supergraphs akin to those of model proteins
whereas spin glasses behave like random sequences of aminoacids which fold
badly.Comment: REVTeX, 9 pages, two-column, 13 EPS figures include
- âŠ