97 research outputs found

    Characterizations and applications of thiol monolayers adsorbed at gold electrodes

    Get PDF
    The application of thiolate monolayers in electrochemical sensing systems involving redox amplification and the determination of nitric oxide has been examined. 10-mercaptosulfonate monolayers were formed at gold electrodes and characterized by infrared reflection absorption spectroscopy (IRRAS), x-ray photoelectron spectroscopy (XPS), and electrochemical reductive desorption (ERD). When dopamine was oxidized at the monolayer-coated electrode with ascorbic acid in solution, an amplification effect was noticed whose magnitude increased with ascorbic acid concentration. These sulfonate monolayer-coated electrodes showed potential in the selective determination of nitric oxide (NO) in the presence of an anionic interfering species. Also, other monolayer systems involving porphyrin moieties were investigated for electro-catalytic activity for the determination of NO.;Electrochemical and spectroscopic methods were utilized to elucidate thermodynamic and kinetic phenomena that take place during thiol adsorption at gold electrodes. ERD was used to determine the rates of film formation at annealed and unannealed electrode surfaces. When micromolar concentrations of thiol precursors were employed, full coverage was only obtained after an hour of immersion time. When data from annealed and unannealed surfaces were evaluated, a faster rate of formation was found for the unannealed surface, and the interrogation of processes at step and terrace sites of the unannealed surface revealed faster initial rates of adsorption at the step sites. Using the Langmuir adsorption isotherm as a first approximation, a DeltaG ads of -9.0 kcal mol-1 was calculated. Other ERD experiments demonstrated that butanethiolate monolayers show fine structure in their current-potential curves that can be attributed to heterogeneity in terrace width. Results from thin-layer visible spectroscopy showed a measurable pH change upon the adsorption of propanethiol from an aqueous solution containing chlorophenol red. The pH change was less than that expected for full monolayer coverage though ERD confirmed a theta \u3e 0.9. Possible mechanisms for the monolayer adsorption process were examined in light of available thermodynamic and kinetic data

    A Volcanic Origin for Sinuous and Branching Channels on Mars: Evidence from Hawaiian Analogs

    Get PDF
    Observations of sinuous and branching channels on planets have long driven a debate about their origin, fluvial or volcanic processes. In some cases planetary conditions rule out fluvial activity (e.g. the Moon, Venus, Mercury). However, the geology of Mars leads to suggestions that liquid water existed on the surface in the past. As a result, some sinuous and branching channels on Mars are cited as evidence of fluvial erosion. Evidence for a fluvial history often focuses on channel morphologies that are unique from a typical lava channel, for instance, a lack of detectable flow margins and levees, islands and terraces. Although these features are typical, they are not necessarily diagnostic of a fluvial system. We conducted field studies in Hawaii to characterize similar features in lava flows to better define which characteristics might be diagnostic of fluvial or volcanic processes. Our martian example is a channel system that originates in the Ascraeus Mons SW rift zone from a fissure. The channel extends for approx.300 km to the SE/E. The proximal channel displays multiple branches, islands, terraces, and has no detectable levees or margins. We conducted field work on the 1859 and 1907 Mauna Loa flows, and the Pohue Bay flow. The 51-km-long 1859 Flow originates from a fissure and is an example of a paired a a and pahoehoe lava flow. We collected DGPS data across a 500 m long island. Here, the channel diverted around a pre-existing obstruction in the channel, building vertical walls up to 9 m in height above the current channel floor. The complicated emplacement history along this channel section, including an initial a a stage partially covered by pahoehoe overflows, resulted in an appearance of terraced channel walls, no levees and diffuse flow margins. The 1907 Mauna Loa flow extends > 20 km from the SW rift zone. The distal flow formed an a a channel. However the proximal flow field comprises a sheet that experienced drainage and sagging of the crust following the eruption. The lateral margins of the proximal sheet, past which all lava flowed to feed the extensive channel, currently display a thickness of < 20 cm. Were this area covered by a dust layer, as is the Tharsis region on Mars, the margins would be difficult to identify. The Pohue Bay flow forms a lava tube. Open roof sections experienced episodes of overflow and spill out. In several places the resultant surface flows appear to have moved as sheet flows that inundated the preexisting meter scale features. Here the flows developed pathways around topographic highs, and in so doing accreted lava onto those features. The results are small islands within the multiple branched channels that display steep, sometimes overhanging walls. None of these features alone proves that the martian channel networks are the result of volcanic processes, but analog studies such as these are the first step towards identifying which morphologies are truly diagnostic of fluvial and volcanic channels

    Massive Science with VO and Grids

    Full text link
    There is a growing need for massive computational resources for the analysis of new astronomical datasets. To tackle this problem, we present here our first steps towards marrying two new and emerging technologies; the Virtual Observatory (e.g, AstroGrid) and the computational grid (e.g. TeraGrid, COSMOS etc.). We discuss the construction of VOTechBroker, which is a modular software tool designed to abstract the tasks of submission and management of a large number of computational jobs to a distributed computer system. The broker will also interact with the AstroGrid workflow and MySpace environments. We discuss our planned usages of the VOTechBroker in computing a huge number of n-point correlation functions from the SDSS data and massive model-fitting of millions of CMBfast models to WMAP data. We also discuss other applications including the determination of the XMM Cluster Survey selection function and the construction of new WMAP maps.Comment: Invited talk at ADASSXV conference published as ASP Conference Series, Vol. XXX, 2005 C. Gabriel, C. Arviset, D. Ponz and E. Solano, eds. 9 page

    Comparison of Inflation Processes at the 1859 Mauna Loa Flow, HI, and the McCartys Flow Field, NM

    Get PDF
    Basaltic lavas typically form channels or tubes during flow emplacement. However, the importance of sheet flow in the development of basalt ic terrains received recognition over the last 15 years. George Walke r?s research on the 1859 Mauna Loa Flow was published posthumously in 2009. In this paper he discusses the concept of endogenous growth, or inflation, for the distal portion of this otherwise channeldominated lava flow. We used this work as a guide when visiting the 1859 flow to help us better interpret the inflation history of the McCartys flow field in NM. Both well preserved flows display similar clues about the process of inflation. The McCartys lava flow field is among the you ngest (approx.3000 yrs) basaltic lava flows in the continental United States. It was emplaced over slopes of <1 degree, which is similar to the location within the 1859 flow where inflation occurred. Although older than the 1859 flow, the McCartys is located in an arid environ ment and is among the most pristine examples of sheet flow morphologies. At the meter scale the flow surface typically forms smooth, undula ting swales that create a polygonal terrain. The literature for simil ar features includes multiple explanatory hypotheses, original breakouts from adjacent lobes, or inflation related upwarping of crust or sa gging along fractures that enable gas release. It is not clear which of these processes is responsible for polygonal terrains, and it is po ssible that one explanation is not the sole cause of this morphology between all inflated flows. Often, these smooth surfaces within an inflated sheet display lineated surfaces and occasional squeeze-ups alon g swale contacts. We interpret the lineations to preserve original fl ow direction and have begun mapping these orientations to better interpret the emplacement history. At the scale of 10s to 100s of meters t he flow comprises multiple topographic plateaus and depressions. Some depressions display level floors with surfaces as described above, while some are bowl shaped with floors covered in broken lava slabs. Th e boundaries between plateaus and depressions are also typically smoo th, grooved surfaces that have been tilted to angles sometimes approaching vertical. The upper margin of these tilted surfaces displays lar ge cracks, sometimes containing squeeze-ups. The bottom boundary with smooth floored depressions typically shows embayment by younger lavas. It appears that this style of terrain represents the emplacement of an extensive sheet that experiences inflation episodes within prefer red regions where lateral spreading of the sheet is inhibited, thereby forming plateaus. Depressions are often the result of non-inflation and can be clearly identified by lateral squeeze-outs along the pit walls that form when the rising crust exposes the still liquid core of the sheet. Our current efforts are focused on

    Statistical Computations with AstroGrid and the Grid

    Full text link
    We outline our first steps towards marrying two new and emerging technologies; the Virtual Observatory (e.g, AstroGrid) and the computational grid. We discuss the construction of VOTechBroker, which is a modular software tool designed to abstract the tasks of submission and management of a large number of computational jobs to a distributed computer system. The broker will also interact with the AstroGrid workflow and MySpace environments. We present our planned usage of the VOTechBroker in computing a huge number of n-point correlation functions from the SDSS, as well as fitting over a million CMBfast models to the WMAP data.Comment: Invited talk to appear in "Proceedings of PHYSTAT05: Statistical Problems in Particle Physics, Astrophysics and Cosmology

    Formation of submarine lava channel textures : insights from laboratory simulations

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): B03104, doi:10.1029/2005JB003796.Laboratory simulations using polyethylene glycol (PEG) extruded at a constant rate and temperature into a tank with a uniform basal slope and filled with a cold sucrose solution generate channels that are defined by stationary levees and mobile flow interiors. These laboratory channels consistently display the following surface textures in the channel: smooth, folded, lineated, and chaotic. In the simulations, we can observe specific local conditions including flow rate, position within the channel, and time that combine to develop each texture. The textures in PEG flows form due to relative differences in shear forces between the PEG crust and the underlying liquid wax. Minimal shear forces form smooth crust, whereas folded crust forms when the shear is sufficiently high to cause ductile deformation. Brittle deformation of solid PEG creates a chaotic texture, and lineated crust results from shear forces along the channel-levee margin. We observe similar textures in submarine lava channels with sources at or near the Axial Summit Trough of the East Pacific Rise between 9° and 10°N. We mapped the surface textures of nine submarine lava channels using high-resolution digital images collected during camera tows. These textural maps, along with observations of the formation of similar features in analog flows, reveal important information about the mechanisms occurring across the channel during emplacement, including relative flow velocity and shear stress.The cruise was funded by a grant to WHOI from the National Science Foundation (NSF) OCE-9819261, with additional funding provided by WHOI thorough the Vetlesen Foundation. The PEG experiments were funded by NSF OCE-0425073 in a grant to Tracy Gregg

    The Utility of a Small Pressurized Rover with Suit Ports for Lunar Exploration: A Geologist's Perspective

    Get PDF
    Rover trade study: As summarized recently, mission simulations at Black Point Lava Flow (Arizona) that included realistic extravehicular activity (EVA) tasking, accurate traverse timelines, and an in-loop science CAPCOM (or SciCOM) showed that a small pressurized rover (SPR) was a better mobility asset than an unpressurized rover (UPR). Traverses within the SPR were easier on crew than spending an entire day in a spacesuit, enhancing crew productivity at each station. The SPR, named Lunar Electric Rover (LER), and sometimes called the Space Exploration Vehicle (SEV), could also provide shelter during a suit malfunction, radiation event, or medical emergency that might occur on the Moon. Intravehicular activity (IVA) capabilities: From within the vehicle, crew could describe and photo-document distant features during drives between stations, as well as in the near-field, directly in front of the LER, providing an ability to begin EVA planning on approach to each outcrop prior to egress. The vehicle can rotate 360 without any lateral movement, providing views in all directions. It has high-visibility windows, a ForeCam, AftCam, port and starboard cameras, docking cameras, and a GigaPan camera. EVA capabilities: To reduce timeline, mass, and volumetric overhead, rapid egress and ingress were envisioned, replacing an airlock with lower cabin pressure than on the International Space Station and suit ports on the aft cabin wall [2]. When needed for closer inspection and sample collecting, crew could egress in about 10 minutes through suit ports. Crew use SuitCams for additional photo-documentation, transmit mobile observations verbally, and collect surface materials. Typical simulations involved 3 to 4 EVA stations/day and 2 to 3 hr/day of boots on the ground. This allowed crew to explore a far larger territory, with more complex geological and in situ resource utilization (ISRU) features, than would a single, longer-duration EVA at one location, while also minimizing crew time in a spacesuit. Additionally, the vehicle could be driven with crew locked into the suit ports. This approach could involve a driver in the cockpit with a suited crewmember in a suit port, or the vehicle could be driven from the aft deck with both crewmembers in their suit ports. This approach was used when distances between stops were short enough that vehicle ingress and egress were less efficient than remaining in the suits and driving. Utility of suit ports: The advantages of suit ports were clearly demonstrated in those field-based trade studies. To illustrate those advantages further, consider the consequences of a SPR without suit ports at the Apollo 17 landing site. At that site, the crew's second EVA was an approximately 18 km loop conducted in a UPR, called the Lunar Roving Vehicle (LRV), in 7 hr 36 min 56 s. The traverse was composed of 5 formal stations, plus 8 additional LRV stations where crew made brief scientific stops. In a scenario involving a SPR without suit ports, crew would go EVA through an airlock and probably be limited to a single EVA per day. In that case, crew could drive the SPR ~9 km from the landing site to station 2, go EVA, and complete station 2 tasks. However, to conduct station 3 tasks, the crew would then need to walk approximately 3 km to station 3, while ground control in Houston tele-robotically drives the LER to station 3. A walk of approximately 3 km is possible, as that is what the Apollo 14 crew did before LRVs were deployed, but it is a lengthy and potentially grueling EVA. Assuming crew completes station 3 tasks, they would likely need to re-enter the SPR, ending the day's EVA, and return to the landing site. They would not be able to walk the additional distances to stations 4 and 5 (the latter being about 6 km from station 3). Thus, crew in an SPR without suit ports would require two days to accomplish the same tasks Apollo 17 crew completed in a single day. If a future crew is involved in long duration traverses on the lunar surface, the deployment of a vehicle with suit ports would probably be a better solution

    Field Geologic Observation and Sample Collection Strategies for Planetary Surface Exploration: Insights from the 2010 Desert RATS Geologist Crewmembers

    Get PDF
    Observation is the primary role of all field geologists, and geologic observations put into an evolving conceptual context will be the most important data stream that will be relayed to Earth during a planetary exploration mission. Sample collection is also an important planetary field activity, and its success is closely tied to the quality of contextual observations. To test protocols for doing effective planetary geologic field- work, the Desert RATS(Research and Technology Studies) project deployed two prototype rovers for two weeks of simulated exploratory traverses in the San Francisco volcanic field of northern Arizona. The authors of this paper represent the geologist crew members who participated in the 2010 field test.We document the procedures adopted for Desert RATS 2010 and report on our experiences regarding these protocols. Careful consideration must be made of various issues that impact the interplay between field geologic observations and sample collection, including time management; strategies relatedtoduplicationofsamplesandobservations;logisticalconstraintson the volume and mass of samples and the volume/transfer of data collected; and paradigms for evaluation of mission success. We find that the 2010 field protocols brought to light important aspects of each of these issues, and we recommend best practices and modifications to training and operational protocols to address them. Underlying our recommendations is the recognition that the capacity of the crew to flexibly execute their activities is paramount. Careful design of mission parameters, especially field geologic protocols, is critical for enabling the crews to successfully meet their science objectives

    Practical Cooling Strategies During Continuous Exercise in Hot Environments: A Systematic Review and Meta-Analysis

    Get PDF
    Background Performing exercise in thermally stressful environments impairs exercise capacity and performance. Cooling during exercise has the potential to attenuate detrimental increases in body temperature and improve exercise capacity and performance. Objective The objective of this review was to assess the effectiveness of practical cooling strategies applied during continuous exercise in hot environments on body temperature, heart rate, whole body sweat production, rating of perceived exertion (RPE), thermal perception and exercise performance. Methods Electronic database searches of MEDLINE, SPORTDiscus, Scopus and Physiotherapy Evidence Database (PEDro) were conducted using medical subject headings, indexing terms and keywords. Studies were eligible if participants were defined as ‘healthy’, the exercise task was conducted in an environment ≥25 °C, it used a cooling strategy that would be practical for athletes to use during competition, cooling was applied during a self-paced or fixed-intensity trial, participants exercised continuously, and the study was a randomised controlled trial with the comparator either a thermoneutral equivalent or no cooling. Data for experimental and comparator groups were meta-analysed and expressed as a standardised mean difference and 95 % confidence interval. Results Fourteen studies including 135 participants met the eligibility criteria. Confidence intervals for meta-analysed data included beneficial and detrimental effects for cooling during exercise on core temperature, mean skin temperature, heart rate and sweat production during fixed-intensity exercise. Cooling benefited RPE and thermal perception during fixed-intensity exercise and improved self-paced exercise performance. Conclusion Cooling during fixed-intensity exercise, particularly before a self-paced exercise trial, improves endurance performance in hot environments by benefiting RPE and thermal perception, but does not appear to attenuate increases in body temperature

    The Effect of Different Operations Modes on Science Capabilities During the 2010 Desert-RATS Test: Insights from the Geologist Crewmembers

    Get PDF
    The 2010 Desert RATS field test utilized two Space Exploration Vehicles (prototype planetary rovers) and four crewmembers (2 per rover) to conduct a geologic traverse across northern Arizona while testing continuous and twice-per-day communications paired with operation modes of separating and exploring individually (Divide & Conquer) and exploring together (Lead & Follow), respectively. This report provides qualitative conclusions from the geologist crewmembers involved in this test as to how these modes of communications and operations affected our ability to conduct field geology. Each mode of communication and operation provided beneficial capabilities that might be further explored for future Human Spaceflight Missions to other solar system objects. We find that more frequent interactions between crews and an Apollo-style Science Team on the Earth best enables scientific progress during human exploration. However, during multiple vehicle missions, this communication with an Earth-based team of scientists, who represent "more minds on the problem", should not come at the exclusion of (or significantly decrease) communication between the crewmembers in different vehicles who have the "eyes on the ground". Inter-crew communications improved when discussions with a backroom were infrequent. Both aspects are critical and cannot be mutually exclusive. Increased vehicle separation distances best enable encounters with multiple geologic units. However, seemingly redundant visits by multiple vehicles to the same feature can be utilized to provide improved process-related observations about the development and modification of the local terrain. We consider the value of data management, transfer, and accessibility to be the most important lesson learned. Crews and backrooms should have access to all data and related interpretations within the mission in as close to real-time conditions as possible. This ensures that while on another planetary surface, crewmembers are as educated as possible with respect to the observations and data they will need to collect at any moment
    corecore