68 research outputs found
STUDENT RETENTION IN INFORMATION SYSTEMS MAJORS: THE ROLE OF CREATIVE SELF-EFFICACY
At times the Information Systems (IS) major has suffered from declining enrollment. Also, STEM fields such as IS are known to suffer from a lack of gender diversity. This research focuses on why students drop out from IS programs and how to provide actionable feedback to improve student retention, particularly among female students. We use creative self-efficacy (CreaSE) as a theoretical lens to explain student retainment. In particular, as students have more confidence in their ability to solve business problems with IS solutions, they are more likely remain in IS courses. Students who sought help from their instructor and StackOverflow.com developed greater CreaSE. However, women were less likely to seek help in general, which creates unique opportunities for future research
Broad Down, Devon: archaeological and other stories
publication-status: PublishedThis is a post-print, author-produced version of an article accepted for publication
Journal of Material Culture, 2010, Vol. 15, Issue 3, pp. 345 - 367. Copyright © 2010 SAGE Publications. The definitive publisher-authenticated version is available online at http://mcu.sagepub.com/content/15/3/345.shortThis article explores the knowledge construction process of an archaeological site in East Devon, UK. Bouncing off an oral historical account of the site that seems to run against scientific truth claims, the author investigates the story of how knowledge of the site has developed over the last two centuries. Building on previous work that explores the history and practice of archaeology, the article opens up questions of what counts as evidence. Then, taking a cue from more recent work that suggests a more dynamic and open-ended engagement with the landscape, the article turns to examine how the meaning of a site can be made and remade. As part of this endeavour, questions of what as well as who can ‘speak’ are examined and some space is opened up for the agency of ‘minor figures’, both human and non-human
The North Staffordshire Osteoarthritis Project – NorStOP: Prospective, 3-year study of the epidemiology and management of clinical osteoarthritis in a general population of older adults
BACKGROUND: The clinical syndrome of joint pain and stiffness in older people is the commonest cause of disability and health care consultation in this age group. Yet there have been few prospective studies of its course over time and its impact on personal and social life. We plan a cohort study in the general population aged 50 years and over to determine the course and prognosis of hand, hip, knee and foot pain, and the impact of these syndromes on participation levels and health care use. METHODS: All patients aged 50 years and over registered with 3 local general practices are to be recruited to a population-based cohort study through the use of a two-stage mailing process. Participants will initially complete a "Health Survey" questionnaire. This will collect information on several areas of life including socio-demographics, general health, physical function, participation, and bodily pain. Those who state that they have experienced any hand problem or any pain in their hands, hips, knees, or feet in the previous 12 months, and also give permission to be re-contacted, will be mailed a "Regional Pains Survey" questionnaire which collects detailed information on the four selected body regions (hand, hips, knees, feet). Follow-up data for the three-year period subsequent to cohort recruitment will be collected through two sources: i) general practice medical records and ii) repeat mailed survey
Identification of Novel Human Damage Response Proteins Targeted through Yeast Orthology
Studies in Saccharomyces cerevisiae show that many proteins influence cellular survival upon exposure to DNA damaging agents. We hypothesized that human orthologs of these S. cerevisiae proteins would also be required for cellular survival after treatment with DNA damaging agents. For this purpose, human homologs of S. cerevisiae proteins were identified and mapped onto the human protein-protein interaction network. The resulting human network was highly modular and a series of selection rules were implemented to identify 45 candidates for human toxicity-modulating proteins. The corresponding transcripts were targeted by RNA interference in human cells. The cell lines with depleted target expression were challenged with three DNA damaging agents: the alkylating agents MMS and 4-NQO, and the oxidizing agent t-BuOOH. A comparison of the survival revealed that the majority (74%) of proteins conferred either sensitivity or resistance. The identified human toxicity-modulating proteins represent a variety of biological functions: autophagy, chromatin modifications, RNA and protein metabolism, and telomere maintenance. Further studies revealed that MMS-induced autophagy increase the survival of cells treated with DNA damaging agents. In summary, we show that damage recovery proteins in humans can be identified through homology to S. cerevisiae and that many of the same pathways are represented among the toxicity modulators
- …