5 research outputs found
ART-RISK 3.0 a fuzzy—based platform that combine GIS and expert assessments for conservation strategies in cultural heritage
Heritage preservation poses numerous difficulties, especially in emergency situations or during budget cuts. In these contexts, having tools that facilitate efficient and rapid management of hazards-vulnerabilities is a priority for the preventive conservation and triage of cultural assets. This paper presents the first (to the authors' knowledge) free and public availability Artificial Intelligence platform designed for conservation strategies in cultural heritage. Art-Risk 3.0 is a platform designed as a fuzzy-logic inference system that combines information from geographical information system maps with expert assessments, in order to identify the contextual threat level and the degree of vulnerability that heritage buildings present. Thanks to the possibilities that the geographic information system offers, 12 Spanish churches (11th - 16th centuries) were analyzed. The artificial intelligence platform developed makes it possible to analyze the index of hazard, vulnerability and functionality, classify buildings according to the risk in order to do a sustainable use of budgets through the rational management of preventive conservation. The data stored in the system allows identify the danger due to geotechnics, precipitation, torrential downpour, thermal oscillation, frost, earthquake and flooding. Through the use of fuzzy logic, the tool interrelates environmental conditions with 14 other variables related to structural risks and the vulnerability of buildings, which are evaluated through bibliographic search and review of photographic images. The geographic information system has identified torrential rains and thermal oscillations as the environmental threats that mostly impact heritage buildings in Spain. The results obtained highlight the Church of Santiago de Jesús as the most vulnerable building due to a lack of preventive conservation programs. These results, consistent with the inclusion of this monument on the list of heritage at risk defined by Hispania Nostra, corroborate the functionality of the model. © 202
Preventive conservation of monuments based on DELPHI method and fuzzy logic
Preventive conservation requires identification, evaluation, and prioritization of the maintenance and restoration of cultural heritage under different hazards. The degradation of monuments is due to the effects caused by different agents (earthquakes, floods, weathering, pollution agents, anthropogenic fac-tors) that produce total or partial losses of architectonic elements or their altera-tions. The conservation degree of each monument depends on the vulnera bility, and its index is an indirect function of the level of deterioration, whereas the hazards depend on the localization and its environment conditions, social de-velopment and anthropogenic agents. RIVUPH and Art-Risk are Spanish pro-jects based on the analysis of environmental risk in historical cities and models to assess vulnerability and lives of buildings in order to improve the preventive conservation of monuments with similar characteristics. For this purpose, two different approaches have been evaluated: DELPHI method and Fuzzy Logic, where both tools are based on the opinion of experts in the field. The vulnerability analysis of three churches of Seville (Spain) have been studied to assess the monuments’ conservation degree. Both models (DELPHI and Fuzzy Logic) are able to forecast the necessities of restoration overlapping different scenario
Stallion sperm transcriptome comprises functionally coherent coding and regulatory RNAs as revealed by microarray analysis and RNA-seq.
Mature mammalian sperm contain a complex population of RNAs some of which might regulate spermatogenesis while others probably play a role in fertilization and early development. Due to this limited knowledge, the biological functions of sperm RNAs remain enigmatic. Here we report the first characterization of the global transcriptome of the sperm of fertile stallions. The findings improved understanding of the biological significance of sperm RNAs which in turn will allow the discovery of sperm-based biomarkers for stallion fertility. The stallion sperm transcriptome was interrogated by analyzing sperm and testes RNA on a 21,000-element equine whole-genome oligoarray and by RNA-seq. Microarray analysis revealed 6,761 transcripts in the sperm, of which 165 were sperm-enriched, and 155 were differentially expressed between the sperm and testes. Next, 70 million raw reads were generated by RNA-seq of which 50% could be aligned with the horse reference genome. A total of 19,257 sequence tags were mapped to all horse chromosomes and the mitochondrial genome. The highest density of mapped transcripts was in gene-rich ECA11, 12 and 13, and the lowest in gene-poor ECA9 and X; 7 gene transcripts originated from ECAY. Structural annotation aligned sperm transcripts with 4,504 known horse and/or human genes, rRNAs and 82 miRNAs, whereas 13,354 sequence tags remained anonymous. The data were aligned with selected equine gene models to identify additional exons and splice variants. Gene Ontology annotations showed that sperm transcripts were associated with molecular processes (chemoattractant-activated signal transduction, ion transport) and cellular components (membranes and vesicles) related to known sperm functions at fertilization, while some messenger and micro RNAs might be critical for early development. The findings suggest that the rich repertoire of coding and non-coding RNAs in stallion sperm is not a random remnant from spermatogenesis in testes but a selectively retained and functionally coherent collection of RNAs