53 research outputs found
Stochastic Dynamic Vehicle Routing in the Euclidean Plane: The Multiple-Server, Capacitated Vehicle Case
In a previous paper [12], we introduced a new model for stochastic and dynamic vehicle routing called the dynamic traveling repairman problem (DTRP), in which a vehicle traveling at constant velocity in a Euclidean region must service demands whose time of arrival, location and on-site service are stochastic. The objective is to find a policy to service demands over an infinite horizon that minimizes the expected system time (wait plus service) of the demands. We showed that the stability condition did not depend on the geometry of the service region (i.e. size, shape, etc.). In addition, we established bounds on the optimal system time and proposed an optimal policy in light traffic and several policies that have system times within a constant factor of the lower bounds in heavy traffic. We showed that the leading behavior of the optimal system time had a particularly simple form which increases much more rapidly with traffic intensity than the system time in traditional queues (e.g. M/G/1). In this paper, we extend these results in several directions. First, we propose new bounds and policies for the problem of m identical vehicles with unlimited capacity and show that in heavy traffic the system time is reduced by a factor of 1/m2 over the single server case. Policies based on dividing the service region into m equal subregion
A Better Match for Drivers and Riders: Reinforcement Learning at Lyft
To better match drivers to riders in our ridesharing application, we revised
Lyft's core matching algorithm. We use a novel online reinforcement learning
approach that estimates the future earnings of drivers in real time and use
this information to find more efficient matches. This change was the first
documented implementation of a ridesharing matching algorithm that can learn
and improve in real time. We evaluated the new approach during weeks of
switchback experimentation in most Lyft markets, and estimated how it benefited
drivers, riders, and the platform. In particular, it enabled our drivers to
serve millions of additional riders each year, leading to more than $30 million
per year in incremental revenue. Lyft rolled out the algorithm globally in
2021
Stochastic and dynamic vehicle routing in Euclidean service regions
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1991.Includes bibliographical references (leaves 124-127).by Garrett John van Ryzin.Ph.D
Control of manufacturing systems with delay
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1987.Bibliography: leaves [173]-[175].by Garrett John Van Ryzin.M.S
In this issue
A regular feature of Manufacturing & Service Operation Management, "In this issue" briefly describes each issue's articles and highlights their contributions.editor's comments, overview, summaries
In This Issue
A regular feature of Manufacturing & Service Operations Management, "In This Issue" briefly describes each issue's articles and highlights their contributions.editor's comments, issue overview, summaries
- …