842 research outputs found
Dissipation control in cavity QED with oscillating mode structures
We demonstrate how a time-dependent dissipative environment may be used as a tool for controlling the quantum state of a two-level atom. In our model system the frequency and coupling strength associated with microscopic reservoir modes are modulated, while the principal features of the reservoir structure remain fixed in time. Physically, this may be achieved by containing a static atom-cavity system inside an oscillating external bath. We show that it is possible to dynamically decouple the atom from its environment, despite the fact that the two remain resonant at all times. This can lead to Markovian dynamics, even for a strong atom-bath coupling, as the atomic decay becomes inhibited into all but a few channels; the reservoir occupation spectrum consequently acquires a sideband structure, with peaks separated by the frequency of the environmental modulation. The reduction in the rate of spontaneous emission using this approach can be significantly greater than could be achieved with an oscillatory atom-bath detuning using the same parameters
Radio-frequency dressed lattices for ultracold alkali atoms
Ultracold atomic gases in periodic potentials are powerful platforms for exploring quantum physics in regimes dominated by many-body effects as well as for developing applications that benefit from quantum mechanical effects. Further advances face a range of challenges including the realization of potentials with lattice constants smaller than optical wavelengths as well as creating schemes for effective addressing and manipulation of single sites. In this paper we propose a dressed-based scheme for creating periodic potential landscapes for ultracold alkali atoms with the capability of overcoming such difficulties. The dressed approach has the advantage of operating in a low-frequency regime where decoherence and heating effects due to spontaneous emission do not take place. These results highlight the possibilities of atom-chip technology in the future development of quantum simulations and quantum technologies, and provide a realistic scheme for starting such an exploration
Decoherence at constant excitation
We present a simple exactly solvable extension of of the Jaynes-Cummings
model by adding dissipation. This is done such that the total number of
excitations is conserved. The Liouville operator in the resulting master
equation can be reduced to blocks of matrices
Control of atomic decay rates via manipulation of reservoir mode frequencies
We analyse the problem of a two-level atom interacting with a time-dependent
dissipative environment modelled by a bath of reservoir modes. In the model of
this paper the principal features of the reservoir structure remain constant in
time, but the microscopic structure does not. In the context of an atom in a
leaky cavity this corresponds to a fixed cavity and a time-dependent external
bath. In this situation we show that by chirping the reservoir modes
sufficiently fast it is possible to inhibit, or dramatically enhance the decay
of the atomic system, even though the gross reservoir structure is fixed. Thus
it is possible to extract energy from a cavity-atom system faster than the
empty cavity rate. Similar, but less dramatic effects are possible for moderate
chirps where partial trapping of atomic population is also possible.Comment: 12 pages, 9 figure
Beyond single-photon localization at the edge of a Photonic Band Gap
We study spontaneous emission in an atomic ladder system, with both
transitions coupled near-resonantly to the edge of a photonic band gap
continuum. The problem is solved through a recently developed technique and
leads to the formation of a ``two-photon+atom'' bound state with fractional
population trapping in both upper states. In the long-time limit, the atom can
be found excited in a superposition of the upper states and a ``direct''
two-photon process coexists with the stepwise one. The sensitivity of the
effect to the particular form of the density of states is also explored.Comment: to appear in Physical Review
Two-dimensional atom trapping in field-induced adiabatic potentials
We show how to create a novel two-dimensional trap for ultracold atoms from a conventional magnetic trap. We achieve this by utilizing rf-induced adiabatic potentials to enhance the trapping potential in one direction. We demonstrate the loading process and discuss the experimental conditions under which it might be possible to prepare a 2D Bose condensate. A scheme for the preparation of coherent matterwave bubbles is also discussed
Time resolved fission in metal clusters
We explore from a theoretical point of view pump and probe (P&P) analysis for
fission of metal clusters where probe pulses are generalized to allow for
scanning various frequencies. We show that it is possible to measure the time
the system needs to develop to scission. This is achieved by a proper choice of
both delay and frequency of the probe pulse. A more detailed analysis even
allows to access the various intermediate stages of the fission process.Comment: 4 pages, 4 figure
Rydberg Wave Packets are Squeezed States
We point out that Rydberg wave packets (and similar ``coherent" molecular
packets) are, in general, squeezed states, rather than the more elementary
coherent states. This observation allows a more intuitive understanding of
their properties; e.g., their revivals.Comment: 7 pages of text plus one figure available in the literature, LA-UR
93-2804, to be published in Quantum Optics, LaTe
Time-dependent tunneling of Bose-Einstein condensates
The influence of atomic interactions on time-dependent tunneling processes of
Bose-Einstein condensates is investigated. In a variety of contexts the
relevant condensate dynamics can be described by a Landau-Zener equation
modified by the appearance of nonlinear contributions. Based on this equation
it is discussed how the interactions modify the tunneling probability. In
particular, it is shown that for certain parameter values, due to a nonlinear
hysteresis effect, complete adiabatic population transfer is impossible however
slowly the resonance is crossed. The results also indicate that the
interactions can cause significant increase as well as decrease of tunneling
probabilities which should be observable in currently feasible experiments.Comment: 8 pages, 5 figure
Observing the spin of a free electron
Long ago, Bohr, Pauli, and Mott argued that it is not, in principle, possible to measure the spin components of a free electron. One can try to use a Stern-Gerlach type of device, but the finite size of the beam results in an uncertainty of the splitting force that is comparable with the gradient force. The result is that no definite spin measurement can be made. Recently there has been a revival of interest in this problem, and we will present our own analysis and quantum-mechanical wave-packet calculations which suggest that a spin measurement is possible for a careful choice of initial conditions
- …