10 research outputs found
The nature of slow dynamics in a minimal model of frustration-limited domains
We present simulation results for the dynamics of a schematic model based on
the frustration-limited domain picture of glass-forming liquids. These results
are compared with approximate theoretical predictions analogous to those
commonly used for supercooled liquid dynamics. Although model relaxation times
increase by several orders of magnitude in a non-Arrhenius manner as a
microphase separation transition is approached, the slow relaxation is in many
ways dissimilar to that of a liquid. In particular, structural relaxation is
nearly exponential in time at each wave vector, indicating that the mode
coupling effects dominating liquid relaxation are comparatively weak within
this model. Relaxation properties of the model are instead well reproduced by
the simplest dynamical extension of a static Hartree approximation. This
approach is qualitatively accurate even for temperatures at which the mode
coupling approximation predicts loss of ergodicity. These results suggest that
the thermodynamically disordered phase of such a minimal model poorly
caricatures the slow dynamics of a liquid near its glass transition
Testing "microscopic" theories of glass-forming liquids
We assess the validity of "microscopic" approaches of glass-forming liquids
based on the sole k nowledge of the static pair density correlations. To do so
we apply them to a benchmark provided by two liquid models that share very
similar static pair density correlation functions while disp laying distinct
temperature evolutions of their relaxation times. We find that the approaches
are unsuccessful in describing the difference in the dynamical behavior of the
two models. Our study is not exhausti ve, and we have not tested the effect of
adding corrections by including for instance three-body density correlations.
Yet, our results appear strong enough to challenge the claim that the slowd own
of relaxation in glass-forming liquids, for which it is well established that
the changes of the static structure factor with temperature are small, can be
explained by "microscopic" appr oaches only requiring the static pair density
correlations as nontrivial input.Comment: 10 pages, 7 figs; Accepted to EPJE Special Issue on The Physics of
Glasses. Arxiv version contains an addendum to the appendix which does not
appear in published versio
Scale-free memory model for multiagent reinforcement learning. Mean field approximation and rock-paper-scissors dynamics
A continuous time model for multiagent systems governed by reinforcement
learning with scale-free memory is developed. The agents are assumed to act
independently of one another in optimizing their choice of possible actions via
trial-and-error search. To gain awareness about the action value the agents
accumulate in their memory the rewards obtained from taking a specific action
at each moment of time. The contribution of the rewards in the past to the
agent current perception of action value is described by an integral operator
with a power-law kernel. Finally a fractional differential equation governing
the system dynamics is obtained. The agents are considered to interact with one
another implicitly via the reward of one agent depending on the choice of the
other agents. The pairwise interaction model is adopted to describe this
effect. As a specific example of systems with non-transitive interactions, a
two agent and three agent systems of the rock-paper-scissors type are analyzed
in detail, including the stability analysis and numerical simulation.
Scale-free memory is demonstrated to cause complex dynamics of the systems at
hand. In particular, it is shown that there can be simultaneously two modes of
the system instability undergoing subcritical and supercritical bifurcation,
with the latter one exhibiting anomalous oscillations with the amplitude and
period growing with time. Besides, the instability onset via this supercritical
mode may be regarded as "altruism self-organization". For the three agent
system the instability dynamics is found to be rather irregular and can be
composed of alternate fragments of oscillations different in their properties.Comment: 17 pages, 7 figur