10 research outputs found

    Lagrangian spin parameter and coherent structures from trajectories released in a high-resolution ocean model

    Get PDF
    A study of the mesoscale eddy field in the presence of coherent vortices, by means of Lagrangian trajectories released in a high-resolution ocean model, is presented in this paper. The investigation confirms previous results drawn from real float data statistics (Veneziani et al., 2004) that the eddy field characteristics are due to the superposition of two distinct regimes associated with strong coherent vortices and with a typically more quiescent background eddy flow. The former gives rise to looping trajectories characterized by subdiffusivity properties due to the trapping effect of the vortices, while the latter produces nonlooping floats characterized by simple diffusivity features. Moreover, the present work completes the study by Veneziani et al. (2004) in regard to the nature of the spin parameter Ω, which was used in the Lagrangian stochastic model that best described the observed eddy statistics.The main result is that the spin obtained from the looping trajectories not only represents a good estimate of the relative vorticity of the vortex core in which the loopers are embedded, but it is also able to follow the vortex temporal evolution. The Lagrangian parameter Ω is then directly connected to the underlying Eulerian structure and could be used as a proxy for the relative vorticity field of coherent vortices

    Lagrangian Data in a High Resolution Numerical Simulation of the North Atlantic. II: On the Pseudo-Eulerian Averaging of Lagrangian Data

    No full text
    In this paper, the statistical properties of the mean flow reconstruction using Lagrangian data are studied, considering the classical "binning" approach based on space-time averaging of finite difference velocity estimates. The work is performed numerically, using as the test flow a solution from a high resolution MICOM simulation of the North Atlantic. A set of trajectories are computed, simulating the motion of surface drifters initially launched on a regular 1 o \Theta 1 o array, transmitting positions every \Deltat = 12 hours, and analyzed over approximately 2 years of the simulation. The drifter distribution in time is influenced by the Ekman flow, resulting in maximum data concentration in the subtropical convergence regions and minimum concentration in the upwelling regions. Pseudo-Eulerian averages U pE , computed from Lagrangian data, are compared to "true" Eulerian averages UE , computed from grid point velocities inside 1 o \Theta 1 o bins for approximately 2 years..

    Parameterization of particle transport at submesoscales in the Gulf Stream region using Lagrangian subgridscale models

    No full text
    â–ș Subgrid-scale error in particle transport is noted in mesoscale eddy resolving models. â–ș A hybrid approach of combining the effect of computed mesoscale eddies with Lagrangian subgrid-scale models is pursued. â–ș Improved particle transport over the submesocales is achieved. Ocean model fields are being routinely used for forecasting the spreading of pollutants, oil spills, and for biogeochemical transport. Recent observations and advances in our understanding of ocean processes indicate there is an explosion of flow instabilities in the submesoscale range. While submesoscale flows have a significant impact on transport at their own scales, they require much more extensive data sets and numerical computations. Therefore, transport carried out by submesoscale flows is quite challenging to approach deterministically. In this study, we put forward a hybrid approach by combining deterministic Lagrangian coherent structures (LCS) to compute transport over the mesoscale range with statistical Lagrangian subgridscale (LSGS) models for the underresolved submesoscale motions. We apply this approach to particle transport in the Gulf Stream region, which exhibits indications of submesoscale activity from both models and observations. We consider HYCOM solutions at two resolutions. In the 1/12° computation, mesoscale features are well resolved but submesoscales are not resolved, while the 1/48° computation captures some of the submesoscale flow instabilities as well. By using metrics of relative dispersion, we investigate three LSGS models and demonstrate that they can be useful in correcting the underestimation of submesoscale dispersion in the 1/12° solution, with respect to relative dispersion obtained from the 1/48° solution and an observational result

    Seasonality of the submesoscale dynamics in the Gulf Stream region

    No full text
    Frontogenesis and frontal instabilities in the mixed layer are known to be important processes in the formation of submesoscale features. We study the seasonality of such processes in the Gulf Stream (GS) region. To approach this problem, a realistic simulation with the Hybrid Coordinate Ocean Model is integrated for 18 months at two horizontal resolutions: a high-resolution (1/48°) simulation able to resolve part of the submesoscale regime and the full range of mesoscale dynamics, and a coarser resolution (1/12°) case, in which submesoscales are not resolved. Results provide an insight into submesoscale dynamics in the complex GS region. A clear seasonal cycle is observed, with submesoscale features mostly present during winter. The submesoscale field is quantitatively characterized in terms of deviation from geostrophy and 2D dynamics. The limiting and controlling factor in the occurrence of submesoscales appears to be the depth of the mixed layer, which controls the reservoir of available potential energy available at the mesoscale fronts that are present most of the year. Atmospheric forcings are the main energy source behind submesoscale formation, but mostly indirectly through mixed layer deepening. The mixed layer instability scaling suggested in the (Fox-Kemper et al., J Phys Oceanogr 38:1145–1165, 2008) parametrization appears to hold, indicating that the parametrization is appropriate even in this complex and mesoscale dominated area
    corecore