52 research outputs found
Disability in young adults following major trauma: 5 year follow up of survivors
BACKGROUND: Injuries are a major cause of mortality and morbidity in young people. Despite this, the long-term consequences for young survivors of severe injury are relatively unexplored. METHODS: Population based cohort study involving 5 year post injury structured interview of all cases of major trauma (Injury Severity Score > 15) identified retrospectively for 12 month period (1988 to 1989) within former Yorkshire Health Authority area of the United Kingdom. RESULTS: 125 individuals aged 11â24 years at time of injury were identified. Of these, 109 (87%) were interviewed. Only 20% (95% CI 14â29%) of those interviewed reported no disability. Mean Office of Population Census and Surveys (OPCS) disability score of the remainder was 7.5 (median 5.8, range 0.5 to 19.4). The most commonly encountered areas of disability were behaviour (54%, 95% CI 45â63%), intellectual functioning (39%, 95% CI 31â49%) and locomotion (29%, 95% CI 22â39%). Many respondents reported that their daily lives were adversely affected by their health problems for example, causing problems with work, 54% (95% CI 45â63%), or looking after the home, 28% (95% CI 21â38%). Higher OPCS scores were usually but not always associated with greater impact on daily activities. The burden of caring responsibilities fell largely on informal carers. 51% (95% CI 42â61%) of those interviewed would have liked additional help to cope with their injury and disability. CONCLUSION: The study has revealed significant disability amongst a cohort of young people 5 years post severe injury. Whilst many of these young people were coping well with the consequences of their injuries, others reported continuing problems with the activities of daily life. The factors underpinning the young people's differing experiences and social outcome should be explored
The priming effect of extracellular UTP on human neutrophils: Role of calcium released from thapsigargin-sensitive intracellular stores
P2Y2 receptors, which are equally responsive to ATP and UTP, can trigger intracellular signaling events, such as intracellular calcium mobilization and mitogen-activated protein (MAP) kinase phosphorylation in polymorphonuclear leukocytes (PMN). Moreover, extracellular nucleotides have been shown to prime chemoattractant-induced superoxide production. The aim of our study was to investigate the mechanism responsible for the priming effect of extracellular nucleotides on reactive oxygen species (ROS) production induced in human neutrophils by two different chemoattractants: formyl-methionyl-leucyl-phenylalanine (fMLP) and interleukin-8 (IL-8). Nucleotide-induced priming of ROS production was concentration- and time-dependent. When UTP was added to neutrophil suspensions prior to chemoattractant, the increase of the response reached the maximum at 1Â min of pre-incubation with the nucleotide. UTP potentiated the phosphorylation of p44/42 and p38 MAP kinases induced by chemoattractants, however the P2 receptor-mediated potentiation of ROS production was still detectable in the presence of a SB203580 or U0126, supporting the view that MAP kinases do not play a major role in regulating the nucleotide-induced effect. In the presence of thapsigargin, an inhibitor of the ubiquitous sarco-endoplasmic reticulum Ca2+-ATPases in mammalian cells, the effect of fMLP was not affected, but UTP-induced priming was abolished, suggesting that the release of calcium from thapsigargin-sensitive intracellular stores is essential for nucleotide-induced priming in human neutrophils
Lysine biosynthesis in selected pathogenic fungi: characterization of lysine auxotrophs and the cloned LYS1 gene of Candida albicans.
The alpha-aminoadipate pathway for the biosynthesis of lysine is present only in fungi and euglena. Until now, this unique metabolic pathway has never been investigated in the opportunistic fungal pathogens Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. Five of the eight enzymes (homocitrate synthase, homoisocitrate dehydrogenase, alpha-aminoadipate reductase, saccharopine reductase, and saccharopine dehydrogenase) of the alpha-aminoadipate pathway and glucose-6-phosphate dehydrogenase, a glycolytic enzyme used as a control, were demonstrated in wild-type cells of these organisms. All enzymes were present in Saccharomyces cerevisiae and the pathogenic organisms except C. neoformans 32608 serotype C, which exhibited no saccharopine reductase activity. The levels of enzyme activity varied considerably from strain to strain. Variation among organisms was also observed for the control enzyme. Among the pathogens, C. albicans exhibited much higher homocitrate synthase, homoisocitrate dehydrogenase, and alpha-aminoadipate reductase activities. Seven lysine auxotrophs of C. albicans and one of Candida tropicalis were characterized biochemically to determine the biochemical blocks and gene-enzyme relationships. Growth responses to alpha-aminoadipate- and lysine-supplemented media, accumulation of alpha-aminoadipate semialdehyde, and the lack of enzyme activity revealed that five of the mutants (WA104, WA153, WC7-1-3, WD1-31-2, and A5155) were blocked at the alpha-aminoadipate reductase step, two (STN57 and WD1-3-6) were blocked at the saccharopine dehydrogenase step, and the C. tropicalis mutant (X-16) was blocked at the saccharopine reductase step. The cloned LYS1 gene of C. albicans in the recombinant plasmid YpB1078 complemented saccharopine dehydrogenase (lys1) mutants of S. cerevisiae and C. albicans. The Lys1+ transformed strains exhibited significant saccharopine dehydrogenase activity in comparison with untransformed mutants. The cloned LYS1 gene has been localized on a 1.8-kb HindIII DNA insert of the recombinant plasmid YpB1041RG1. These results established the gene-enzyme relationship in the second half of the alpha-aminoadipate pathway. The presence of this unique pathway in the pathogenic fungi could be useful for their rapid detection and control
- âŠ