18 research outputs found
A Disintegrin and Metalloenzyme (ADAM) 17 Activation Is Regulated by α5β1 Integrin in Kidney Mesangial Cells
The disintegrin and metalloenzyme ADAM17 participates in numerous inflammatory and proliferative diseases, and its pathophysiological role was implicated in kidney fibrosis, polycystic kidney disease and other chronic kidney diseases. At present, we have little understanding how the enzyme activity is regulated. In this study we wanted to characterize the role of α5β1 integrin in ADAM17 activity regulation during G protein-coupled receptor (GPCR) stimulation.We showed previously that the profibrotic GPCR agonist serotonin (5-HT) induced kidney mesangial cell proliferation through ADAM17 activation and heparin-binding epidermal growth factor (HB-EGF) shedding. In the present studies we observed that in unstimulated mesangial cell lysates α5β1 integrin co-precipitated with ADAM17 and that 5-HT treatment of the cells induced dissociation of α5β1 integrin from ADAM17. Using fluorescence immunostaining and in situ proximity ligation assay, we identified the perinuclear region as the localization of the ADAM17/α5β1 integrin interaction. In cell-free assays, we showed that purified α5β1 integrin and β1 integrin dose-dependently bound to and inhibited activity of recombinant ADAM17. We provided evidence that the conformation of the integrin determines its ADAM17-binding ability. To study the effect of β1 integrin on ADAM17 sheddase activity, we employed alkaline phosphatase-tagged HB-EGF. Overexpression of β1 integrin lead to complete inhibition of 5-HT-induced HB-EGF shedding and silencing β1 integrin by siRNA significantly increased mesangial cells ADAM17 responsiveness to 5-HT.Our data show for the first time that β1 integrin has an important physiological role in ADAM17 activity regulation. We suggest that regulating α5β1 integrin binding to ADAM17 could be an attractive therapeutic target in chronic kidney diseases
Utilizing the Luminex Magnetic Bead-Based Suspension Array for Rapid Multiplexed Phosphoprotein Quantification.
The study of protein phosphorylation is critical for the advancement of our understanding of cellular responses to external and internal stimuli. Phosphorylation, the addition of phosphate groups, most often occurs on serine, threonine, or tyrosine residues due to the action of protein kinases. This structural change causes the protein to become activated (or deactivated) and enables it in turn to initiate the phosphorylation of other proteins in a cascade, eventually causing cell-wide changes such as apoptosis, cell differentiation, and growth (among others). Cellular phosphoprotein pathway dysregulation by mutation or chromosomal instability can often give the cell a selective advantage and lead to cancer. Obviously the understanding of these systems is of huge importance to the field of oncology.This chapter aims to provide a "how to" manual for one such technology, the 96-well plate-based xMAP® platform from Luminex. The system utilizes antibody-bound free-floating magnetic spheres which can easily be removed from suspension via magnetization. There are 100 unique bead sets (moving up to 500 bead sets for the most recent system) identified by the ratio of two dyes coating the microsphere. Each bead set is conjugated to a specific antibody which allows targeted protein extraction from low-concentration lysate solution. Biotinylated secondary antibodies/streptavidin-R-phycoerythrin (SAPE) complexes provide the quantification mechanism for the phosphoprotein of interest
The bradykinin B2 receptor induces multiple cellular responses leading to the proliferation of human renal carcinoma cell lines
Inga I Kramarenko1, Thomas A Morinelli1,2, Marlene A Bunni1,2, John R Raymond Sr3, Maria N Garnovskaya11Department of Medicine (Nephrology Division), Medical University of South Carolina, Charleston, SC, USA; 2Medical and Research Services of the Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, USA; 3Medical College of Wisconsin, Milwaukee, WI, USABackground: The vasoactive peptide bradykinin (BK) acts as a potent growth factor for normal kidney cells, but there have been few studies on the role of BK in renal cell carcinomas.Purpose: In this study, we tested the hypothesis that BK also acts as a mitogen in kidney carcinomas, and explored the effects of BK in human renal carcinoma A498 cells.Methods: The presence of mRNAs for BK B1 and BK B2 receptors in A498 cells was demonstrated by reverse transcription–polymerase chain reaction. To study BK signaling pathways, we employed fluorescent measurements of intracellular Ca2+, measured changes in extracellular pH as a reflection of Na+/H+ exchange (NHE) with a Cytosensor microphysiometer, and assessed extracellular signal-regulated kinase (ERK) activation by Western blotting.Results: Exposure to 100 nM of BK resulted in the rapid elevation of intracellular Ca2+, caused a ≥30% increase in NHE activity, and a ≥300% increase in ERK phosphorylation. All BK signals were blocked by HOE140, a BK B2 receptor antagonist, but not by a B1 receptor antagonist. Inhibitor studies suggest that BK-induced ERK activation requires phospholipase C and protein kinase C activities, and is Ca2+/calmodulin-dependent. The amiloride analog 5-(N-methyl-N-isobutyl)-amiloride (MIA) blocked short-term NHE activation and inhibited ERK phosphorylation, suggesting that NHE is critical for ERK activation by BK. BK induced an approximately 40% increase in the proliferation of A498 cells as assessed by bromodeoxyuridine uptake. This effect was blocked by the ERK inhibitor PD98059, and was dependent on NHE activity.Conclusion: We conclude that BK exerts mitogenic effects in A498 cells via the BK B2 receptor activation of growth-associated NHE and ERK.Keywords: A498 cells, G protein-coupled receptors, signal transduction, Na+/H+ exchange, extracellular signal-regulated protein kinas
Jak2 and Ca2+/calmodulin are key intermediates for bradykinin B-2 receptor-mediated activation of Na+/H+ exchange in KNRK and CHO cells
Na+/H+ exchangers are ubiquitous in mammalian cells, carrying out key functions, such as cell volume defense, acid-base homeostasis, and regulation of the cytoskeleton. We used two screening technologies (FLIPR and microphysiometry) to characterize the signal transduction pathway used by the bradykinin beta(2) receptor to activate Na+/H+ exchange in two cell lines, KNRK and CHO. In both cell types, beta(2) receptor activation resulted in rapid increases in the rate of proton extrusion that were sodium-dependent and could be blocked by the Na+/H+ exchange inhibitors EIPA and MIA or by replacing extracellular sodium with TMA. Activation of Na+/H+ exchange by bradykinin was concentration-dependent and could be blocked by the selective beta(2) receptor antagonist HOE140, but not by the beta(1) receptor antagonist des-Arg(10)-HOE140. Inhibitors of Jak2 tyrosine kinase (genistein and AG490) and of CAM (W-7 and calmidazolium) attenuated bradykinin-induced activation of Na+/H+ exchange. Bradykinin induced formation of a complex between CAM and Jak2, supporting a regulatory role for Jak2 and CAM in the activation of Na+/H+ exchange in KNRK and CHO cells. We propose that this pathway (beta(2) receptor --> Jak2 --> CAM --> Na+/H+ exchanger) is a fundamental regulator of Na+/H+ exchange activity