15 research outputs found
Fulvestrant treatment of precocious puberty in girls with McCune-Albright syndrome
BACKGROUND: McCune-Albright Syndrome (MAS) is usually characterized by the triad of precocious puberty (PP), fibrous dysplasia, and café au lait spots. Previous treatments investigated for PP have included aromatase inhibitors and the estrogen receptor modulator, tamoxifen. Although some agents have been partially effective, the optimal pharmacologic treatment of PP in girls with MAS has not been identified. The objective of this study was to evaluate the safety and efficacy of fulvestrant (Faslodex(TM)), a pure estrogen receptor antagonist, in girls with progressive precocious puberty (PP) associated with McCune-Albright Syndrome (MAS). METHODS: In this prospective international multicenter trial, thirty girls ≤ 10 years old with MAS and progressive PP received fulvestrant 4 mg/kg via monthly intramuscular injections for 12 months. Changes in vaginal bleeding, rates of bone age advancement, growth velocity, Tanner staging, predicted adult heights, and uterine and ovarian volumes were measured. RESULTS: Median vaginal bleeding days decreased from 12.0 days per year to 1.0 day per year, with a median change in frequency of -3.6 days, (95% confidence interval (CI) -10.10, 0.00; p = 0.0146). Of patients with baseline bleeding, 74% experienced a ≥50% reduction in bleeding, and 35% experienced complete cessation during the study period (95% CI 51.6%, 89.8%; 16.4%, 57.3%, respectively). Average rates of bone age advancement (ΔBA/ΔCA) decreased from 1.99 pre-treatment to 1.06 on treatment (mean change -0.93, 95% CI -1.43, -0.43; p = 0.0007). No significant changes in uterine volumes or other endpoints or serious adverse events occurred. CONCLUSIONS: Fulvestrant was well tolerated and moderately effective in decreasing vaginal bleeding and rates of skeletal maturation in girls with MAS. Longer-term studies aimed at further defining potential benefits and risks of this novel therapeutic approach in girls with MAS are needed. TRIAL REGISTRATION: NCT0027891
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Autoantibody and T cell responses to oxidative post-translationally modified insulin neoantigenic peptides in type 1 diabetes
Aims/hypothesis: Antibodies specific to oxidative post-translational modifications (oxPTM) of insulin (oxPTM-INS) are present in most individuals with type 1 diabetes, even before the clinical onset. However, the antigenic determinants of such response are still unknown. In this study, we investigated the antibody response to oxPTM-INS neoepitope peptides (oxPTM-INSPs) and evaluated their ability to stimulate humoral and T cell responses in type 1 diabetes. We also assessed the concordance between antibody and T cell responses to the oxPTM-INS neoantigenic peptides. Methods: oxPTM-INS was generated by exposing insulin to various reactive oxidants. The insulin fragments resulting from oxPTM were fractionated by size-exclusion chromatography further to ELISA and LC-MS/MS analysis to identify the oxidised peptide neoepitopes. Immunogenic peptide candidates were produced and then modified in house or designed to incorporate in silico-oxidised amino acids during synthesis. Autoantibodies to the oxPTM-INSPs were tested by ELISA using sera from 63 participants with new-onset type 1 diabetes and 30 control participants. An additional 18 fresh blood samples from participants with recently diagnosed type 1 diabetes, five with established disease, and from 11 control participants were used to evaluate, in parallel, CD4+ and CD8+ T cell activation by oxPTM-INSPs. Results: We observed antibody and T cell responses to three out of six LC-MS/MS-identified insulin peptide candidates: A:12–21 (SLYQLENYCN, native insulin peptide 3 [Nt-INSP-3]), B:11–30 (LVEALYLVCGERGFFYTPKT, Nt-INSP-4) and B:21–30 (ERGFFYTPKT, Nt-INSP-6). For Nt-INSP-4 and Nt-INSP-6, serum antibody binding was stronger in type 1 diabetes compared with healthy control participants (p≤0.02), with oxidised forms of ERGFFYTPKT, oxPTM-INSP-6 conferring the highest antibody binding (83% binders to peptide modified in house by hydroxyl radical [●OH] and >88% to in silico-oxidised peptide; p≤0.001 vs control participants). Nt-INSP-4 induced the strongest T cell stimulation in type 1 diabetes compared with control participants for both CD4+ (p<0.001) and CD8+ (p=0.049). CD4+ response to oxPTM-INSP-6 was also commoner in type 1 diabetes than in control participants (66.7% vs 27.3%; p=0.039). Among individuals with type 1 diabetes, the CD4+ response to oxPTM-INSP-6 was more frequent than to Nt-INSP-6 (66.7% vs 27.8%; p=0.045). Overall, 44.4% of patients showed a concordant autoimmune response to oxPTM-INSP involving simultaneously CD4+ and CD8+ T cells and autoantibodies. Conclusions/interpretation: Our findings support the concept that oxidative stress, and neoantigenic epitopes of insulin, may be involved in the immunopathogenesis of type 1 diabetes. Graphical abstract: [Figure not available: see fulltext.].</p
Autoantibody and T cell responses to oxidative post-translationally modified insulin neoantigenic peptides in type 1 diabetes
Aims/hypothesis Antibodies specific to oxidative post-translational modifications (oxPTM) of insulin (oxPTM-INS) are present in most individuals with type 1 diabetes, even before the clinical onset. However, the antigenic determinants of such response are still unknown. In this study, we investigated the antibody response to oxPTM-INS neoepitope peptides (oxPTM-INSPs) and evaluated their ability to stimulate humoral and T cell responses in type 1 diabetes. We also assessed the concordance between antibody and T cell responses to the oxPTM-INS neoantigenic peptides. Methods oxPTM-INS was generated by exposing insulin to various reactive oxidants. The insulin fragments resulting from oxPTM were fractionated by size-exclusion chromatography further to ELISA and LC-MS/MS analysis to identify the oxidised peptide neoepitopes. Immunogenic peptide candidates were produced and then modified in house or designed to incorporate in silico-oxidised amino acids during synthesis. Autoantibodies to the oxPTM-INSPs were tested by ELISA using sera from 63 participants with new-onset type 1 diabetes and 30 control participants. An additional 18 fresh blood samples from participants with recently diagnosed type 1 diabetes, five with established disease, and from 11 control participants were used to evaluate, in parallel, CD4(+) and CD8(+) T cell activation by oxPTM-INSPs. Results We observed antibody and T cell responses to three out of six LC-MS/MS-identified insulin peptide candidates: A:12-21 (SLYQLENYCN, native insulin peptide 3 [Nt-INSP-3]), B:11-30 (LVEALYLVCGERGFFYTPKT, Nt-INSP-4) and B:21-30 (ERGFFYTPKT, Nt-INSP-6). For Nt-INSP-4 and Nt-INSP-6, serum antibody binding was stronger in type 1 diabetes compared with healthy control participants (p &lt;= 0.02), with oxidised forms of ERGFFYTPKT, oxPTM-INSP-6 conferring the highest antibody binding (83% binders to peptide modified in house by hydroxyl radical [(OH)-O-?] and &gt;88% to in silico-oxidised peptide; p &lt;= 0.001 vs control participants). Nt-INSP-4 induced the strongest T cell stimulation in type 1 diabetes compared with control participants for both CD4(+) (p&lt;0.001) and CD8(+) (p=0.049). CD4(+) response to oxPTM-INSP-6 was also commoner in type 1 diabetes than in control participants (66.7% vs 27.3%; p=0.039). Among individuals with type 1 diabetes, the CD4(+) response to oxPTM-INSP-6 was more frequent than to Nt-INSP-6 (66.7% vs 27.8%; p=0.045). Overall, 44.4% of patients showed a concordant autoimmune response to oxPTM-INSP involving simultaneously CD4(+) and CD8(+) T cells and autoantibodies. Conclusions/interpretation Our findings support the concept that oxidative stress, and neoantigenic epitopes of insulin, may be involved in the immunopathogenesis of type 1 diabetes.Funding Agencies|JDRF [1-SRA-2017-512-Q-R]; European Foundation for the Study of Diabetes Future Leaders Mentorship Programme for Clinical Diabetologists 2018; Italian Ministry of Health [GR-201812365982]; AstraZeneca; Ordine dei Medici ed Odontoiatri di Salerno (OMCeO Salerno); European Foundation for the Study of Diabetes/Novo Nordisk Programme for Diabetes Research in Europe 2020; Fondazione Italiana Sclerosi Multipla [2020/R/13]; Progetti di Rilevante Interesse Nazionale [202077EYN7]</p
A horizon scan of global conservation issues for 2015
This paper presents the results of our sixth annual horizon scan, which aims to identify phenomena that may have substantial effects on the global environment, but are not widely known or well understood. A group of professional horizon scanners, researchers, practitioners, and a journalist identified 15 topics via an iterative, Delphi-like process. The topics include a novel class of insecticide compounds, legalisation of recreational drugs, and the emergence of a new ecosystem associated with ice retreat in the Antarctic