2 research outputs found

    The Effect of Wind Stress on Seasonal Sea-Level Change on the Northwestern European Shelf

    No full text
    Projections of relative sea level change (RSLC) are commonly reported at an annual mean basis. The seasonality of RSLC is often not considered, even though it may modulate the impacts of annual mean RSLC. Here, we study seasonal differences in twenty-first-century ocean dynamic sea level change (DSLC; 2081–2100 minus 1995–2014) on the Northwestern European Shelf (NWES) and their drivers, using an ensemble of 33 CMIP6 models complemented with experiments performed with a regional ocean model. For the high-end emissions scenario SSP5–8.5, we find substantial seasonal differences in ensemble mean DSLC, especially in the southeastern North Sea. For example, at Esbjerg (Denmark), winter mean DSLC is on average 8.4 cm higher than summer mean DSLC. Along all coasts on the NWES, DSLC is higher in winter and spring than in summer and autumn. For the low-end emissions scenario SSP1–2.6, these seasonal differences are smaller. Our experiments indicate that the changes in winter and summer sea level anomalies are mainly driven by regional changes in wind stress anomalies, which are generally southwesterly and east-northeasterly over the NWES, respectively. In spring and autumn, regional wind stress changes play a smaller role. We also show that CMIP6 models not resolving currents through the English Channel cannot accurately simulate the effect of seasonal wind stress changes on the NWES. Our results imply that using projections of annual mean RSLC may underestimate the projected changes in extreme coastal sea levels in spring and winter. Additionally, changes in the seasonal sea level cycle may affect groundwater dynamics and the inundation characteristics of intertidal ecosystems.Physical and Space GeodesyEnvironmental Fluid Mechanic

    The timing of decreasing coastal flood protection due to sea-level rise

    No full text
    Sea-level rise amplifies the frequency of extreme sea levels by raising their baseline height. Amplifications are often projected for arbitrary future years and benchmark frequencies. Consequently, such projections do not indicate when flood risk thresholds may be crossed given the current degree of local coastal protection. To better support adaptation planning and comparative vulnerability analyses, we project the timing of the frequency amplification of extreme sea levels relative to estimated local flood protection standards, using sea-level rise projections of IPCC AR6 until 2150. Our central estimates indicate that those degrees of protection will be exceeded ten times as frequently within the next 30 years (the lead time that large adaptation measures may take) at 26% and 32% of the tide gauges considered, and annually at 4% and 8%, for a low- and high-emissions scenario, respectively. Adaptation planners may use our framework to assess the available lead time and useful lifetime of protective infrastructure.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Physical and Space GeodesyEnvironmental Fluid Mechanic
    corecore