910 research outputs found
Droplet Evaporation on Heated Hydrophobic and Superhydrophobic Surfaces
The evaporation characteristics of sessilewater droplets on smooth hydrophobic and structured superhydrophobic heated surfaces are experimentally investigated. Droplets placed on the hierarchical superhydrophobic surface subtend a very high contact angle (∼160°) and demonstrate low roll-off angle (∼1°), while the hydrophobic substrate supports corresponding values of 120° and ∼10°. The substrates are heated to different constant temperatures in the range of 40–60 °C, which causes the droplet to evaporate much faster than in the case of natural evaporationwithout heating. The geometric parameters of the droplet, such as contact angle, contact radius, and volume evolution over time, are experimentally tracked. The droplets are observed to evaporate primarily in a constant-contact-angle mode where the contact line slides along the surface. The measurements are compared with predictions from a model based on diffusion of vapor into the ambient that assumes isothermal conditions. This vapor-diffusion-only model captures the qualitative evaporation characteristics on both test substrates, but reasonable quantitative agreement is achieved only for the hydrophobic surface. The superhydrophobic surface demonstrates significant deviation between the measured evaporation rate and that obtained using the vapor-diffusion-only model, with the difference being amplified as the substrate temperature is increased.Asimple model considering thermal diffusion through the droplet is used to highlight the important role of evaporative cooling at the droplet interface in determining the droplet evaporation characteristics on superhydrophobic surfaces
Thermal Management of Transient Power Spikes in Electronics - Phase Change Energy Storage or Copper Heat Sinks?
A transient thermal analysis is performed to investigate thermal control of power semiconductors using phase change materials, and to compare the performance of this approach to that of copper heat sinks. Both the melting of the phase change material under a transient power spike input, as well as the resolidification process, are considered. Phase change materials of different kinds (paraffin waxes and metallic alloys) are considered, with and without the use of thermal conductivity enhancers. Simple expressions for the melt depth, melting time and temperature distribution are presented in terms of the dimensions of the heat sink and the thermophysical properties of the phase change material, to aid in the design of passive thermal control systems. The simplified analytical expressions are verified against numerical simulations, and are shown to be excellent tools for design calculations. The suppression of junction temperatures achieved by the use of phase change materials when compared to the performance with copper heat sinks is illustrated. Merits of employing phase change materials for pulsed power electronics cooling applications are discussed
Recommended from our members
Measurement and Modeling of Void Fraction in High Pressure Condensing Flows through Microchannels
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.Void fraction measurements are obtained using high speed video for the condensation of R404A in
tubes of diameter 0.508, 1.00, and 3.00 mm. Experiments were conducted on refrigerant R404A throughout
the entire condensation quality range (0.05 < x < 0.95) at varying mass fluxes (200 ≤ G ≤ 800 kg m-2 s-1) and
saturation temperatures from 30 to 60°C (0.38 ≤ pr ≤ 0.77). These high pressures are representative of actual
operation of air-conditioning and refrigeration equipment. The influence of saturation temperature on void
fraction is most pronounced in the quality range 0.25 < x < 0.75. In addition, it was found that the influence
of mass flux on void fraction was negligible for all saturation temperatures and tube diameters investigated.
A new drift flux void fraction model is developed to predict void fraction for condensing flows in
microchannels and compared with the R404A data and R134a void fraction data from Winkler et al. (2012a).
Overall the model is able to predict 92.3% of the R404A data and 81.6% of all refrigerant data within 25%
An Explicit Conditioning Method for Image Reconstruction in Electrical Capacitance Tomography
A new electrical capacitance tomography (ECT) image reconstruction method, termed Sensitivity Factor Regularization (SFR), is developed. The SFR method provides an explicit formulation for solving the image reconstruction problem that performs better than other explicit methods, such as linear back-projection and Tikhonov regularization, while providing the same computational efficiency. The computational ease of the SFR method renders it an attractive option for ECT where real-time imaging is required and theoretical statistical evaluation of proposed electrode configurations may readily be performed. A statistical study is conducted using SFR image reconstructions for investigating the impact of electrode density on image quality for a symmetric ECT system characterizing a square cross-section. A larger number of smaller electrodes allows more data to be gathered for use in image reconstruction, but degrades signal-to-noise ratio in the measurements. The statistical study using SFR clearly identifies a theoretical optimum electrode density that minimizes reconstructed image error for a given level of measurement noise
Latent-Heat Augmentation of Thermocline Energy Storage for Concentrating Solar Power – A System-Level Assessment
Molten-salt thermocline tanks are a low-cost energy storage option for concentrating solar power plants. Despite the potential economic advantage, the capacity of thermocline tanks to store sufficient amounts of high-temperature heat is limited by the low energy density of the constituent sensible-heat storage media. A promising design modification replaces conventional rock filler inside the tank with an encapsulated phase-change material (PCM), contributing a latent heat storage mechanism to increase the overall energy density. The current study presents a new finite-volume approach to simulate mass and energy transport inside a latent heat thermocline tank at low computational cost. This storage model is then integrated into a system-level model of a molten-salt power tower plant to inform tank operation with respect to realistic solar collection and power production. With this system model, PCMs with different melting temperatures and heats of fusion are evaluated for their viability in latent heat storage for solar plants. Thermocline tanks filled with a single PCM do not yield a substantial increase in annual storage or plant output over a conventional rock-filled tank of equal size. As the melting temperature and heat of fusion are increased, the ability of the PCM to support steam generation improves but the corresponding ability of the thermocline tank to utilize this available latent heat decreases. This trend results from an inherent deconstruction of the heat-exchange region inside the tank between sensible and latent heat transfer, preventing effective use of the added phase change for daily plant operations. This problem can be circumvented with a cascaded filler structure composed of multiple PCMs with their melting temperatures tuned along the tank height. However, storage benefits with these cascaded tank structures are shown to be highly sensitive to the proper selection of the PCM melting points relative to the thermocline tank operating temperatures
Void Detection in Dielectric Films using a Floating Network of Substrate-Embedded Electrodes
A sensor is developed for simple, in situ characterization of dielectric thermal interface materials (TIMs) at bond line thicknesses less than 100 lm. The working principle is based on the detection of regions of contrasting electric permittivity. An array of long, parallel electrodes is flush-mounted into each opposing substrate face of a narrow gap interface, and exposed to the gap formed between the two surfaces. Electrodes are oriented such that their lengthwise dimension in one substrate runs perpendicular to those in the other. A capacitance measurement taken between opposing electrodes is used to characterize the interface region in the vicinity of their crossing point (junction). The electric field associated with each electrode junction is numerically simulated and analyzed. Criteria are developed for the design of electrode junction geometries that localize the electric fields. The capacitances between floating-ground electrodes in the electrode sensor configuration employed give rise to a nontrivial network of interacting capacitances which strongly influence the measured response at any junction. A generalized solution for analyzing the floating network response is presented. The technique is used to experimentally detect thermal grease spots of 0.2mm to 1.8mm diameter within a 25 lm interface gap. It is necessary to use the generalized solution to the capacitance network developed in this work to properly delineate regions of contrasting permittivity in the interface gap region using capacitance measurements
Near-Field Focusing Sensor for Characterization of Void Content in Thin Dielectric Layers
A sensor concept is developed and analyzed for in situ characterization of a thin dielectric layer. An array of long, planar electrodes is flush-mounted into opposing faces of two substrates on either side of the dielectric layer. The substrates are oriented such that the lengthwise dimensions of the opposing electrodes are orthogonal. Capacitance is measured between single electrode pairs on opposite substrates while all other electrodes are grounded. The electric field between the active electrodes is sharply focused at their crossing point, resulting in high sensitivity to void content in a square detection zone of the dielectric layer. For a fixed interfacial gap size, direct proportionality of the capacitance with void fraction within the detection zone is poor for high electrode-to-electrode spacing on the substrates, but improves dramatically as this spacing is reduced. Three methods of deriving a simulationbased sensitivity response of measured capacitance to any arbitrary two-dimensional void geometry are investigated. The best method requires data from simulations of an empty air gap and a TIM-filled gap, and uses a reduced-order superposition technique to predict the normalized capacitance value obtained for any void geometry to within 10% of that predicted by a high-fidelity direct simulation. The sensing technique is demonstrated using manually introduced voids of 250 μm–2000 μm diameter in a 254 μm thick interface material layer with a dielectric constant of 4.7. The relationship of the capacitance to the void fraction is shown to fall within the predicted bounds
Investigation of Liquid Flow in Microchannels
Liquid flow in microchannels is investigated both experimentally and numerically in this work. The experiments are carried out in microchannels with hydraulic diameters from 244 to 974 m at Reynolds numbers ranging from 230 to 6500. The pressure drop in these microchannels is measured in situ, and is also determined by correcting global measurements for inlet and exit losses. Onset of turbulence is verified by flow visualization. The experimental measurements of pressure drop are compared to numerical predictions. Results from this work show that conventional theory may be used to successfully predict the flow behavior in microchannels in the range of dimensions considered here
Capacitive Sensing of Local Bond Layer Thickness and Coverage in Thermal Interface Materials
An instrumentation technique is developed using embedded capacitive sensors to measure the thickness and evenness of coverage of a thin layer of dielectric thermal interface material (TIM) between two substrates. The technique requires an array of sensors embedded into one substrate, with an electrically conductive opposing substrate. Local capacitance measurements are sensitive to both local bond layer thickness and local voiding. We propose a means for using an array of capacitance measurements to interpret both bond layer thickness and local voiding at every sensor location. An algorithm is developed which reveals both characteristics from a single set of capacitance measurements. Experiments are conducted with thermal grease layers of different bond layer thicknesses and void distributions using a prototype system constructed on printed circuit boards. The thickness and void distribution are successfully mapped across the bond layer using the algorithm developed. The technique offers a sensing approach for in situ instrumentation of layers of thermal grease in a thermal test vehicle
- …