11 research outputs found

    Kinematic features of passive forelimb movements and rat cuneate neuron discharges

    No full text
    We examined the role of main and external cuneate nuclei neurons in processing sensory information during forelimb passive movement. We recorded activity of neurons using circular and figure-eight trajectories, at different speeds, in anaesthetized rats. A multivariate regression analysis was performed to correlate neural discharge to movement direction and speed, the two components of the velocity vector. We found that the activity of the majority of cuneate neurons related to passive movement velocity and that the directional component of the velocity vector accounted for a larger fraction of the variability in the firing rate than the scalar component (speed). These results indicate that cuneate cells can process whole limb afferent information to elaborate a representation of the movement velocity vector

    Kinematic features of passive forelimb movements and rat cuneate neuron discharges

    No full text
    We examined the role of main and external cuneate nuclei neurons in processing sensory information during forelimb passive movement. We recorded activity of neurons using circular and figure-eight trajectories, at different speeds, in anaesthetized rats. A multivariate regression analysis was performed to correlate neural discharge to movement direction and speed, the two components of the velocity vector. We found that the activity of the majority of cuneate neurons related to passive movement velocity and that the directional component of the velocity vector accounted for a larger fraction of the variability in the firing rate than the scalar component (speed). These results indicate that cuneate cells can process whole limb afferent information to elaborate a representation of the movement velocity vector. NeuroReport 13:267-271 (C) 2002 Lippincott Williams Wilkins

    Kinematic features of passive forelimb movements and rat cuneate neuron discharges

    No full text
    We examined the role of main and external cuneate nuclei neurons in processing sensory information during forelimb passive movement. We recorded activity of neurons using circular and figure-eight trajectories, at different speeds, in anaesthetized rats. A multivariate regression analysis was performed to correlate neural discharge to movement direction and speed, the two components of the velocity vector. We found that the activity of the majority of cuneate neurons related to passive movement velocity and that the directional component of the velocity vector accounted for a larger fraction of the variability in the firing rate than the scalar component (speed). These results indicate that cuneate cells can process whole limb afferent information to elaborate a representation of the movement velocity vector

    Anisotropic representation of forelimb position in the cerebellar cortex and nucleus interpositus of the rat

    No full text
    The relationship between the spatial location of limb and the activity of cerebellar neurons has received little attention and its nature still remains ambiguous. To address this question we studied the activity of Purkinje and nucleus interpositus cells in relation to the spatial location of rat forelimb. A computer-controlled robot arm displaced the limb passively across 15 positions distributed on a parasagittal plane. The limb was upheld for 8 s in each position, which was identified by the Cartesian coordinates of the forepaw. We selected the neurons whose activities were significantly modulated by forepaw position and found that the majority represented preferentially one spatial dimension of the Cartesian plane both in the cerebellar cortex and nucleus interpositus. In particular, the antero-posterior axis was best represented in cerebellar neuronal discharges. This result suggests that the intermediate part of the cerebellum might encode limb position by way of an anisotropic representation of the spatial coordinates of the limb end-point

    Anisotropic representation of forelimb position in the cerebellar cortex and nucleus interpositus of the rat

    No full text
    The relationship between the spatial location of limb and the activity of cerebellar neurons has received little attention and its nature still remains ambiguous. To address this question we studied the activity of Purkinje and nucleus interpositus cells in relation to the spatial location of rat forelimb. A computer-controlled robot arm displaced the limb passively across 15 positions distributed on a parasagittal plane. The limb was upheld for 8 s in each position, which was identified by the Cartesian coordinates of the forepaw. We selected the neurons whose activities were significantly modulated by forepaw position and found that the majority represented preferentially one spatial dimension of the Cartesian plane both in the cerebellar cortex and nucleus interpositus. In particular, the antero-posterior axis was best represented in cerebellar neuronal discharges. This result suggests that the intermediate part of the cerebellum might encode limb position by way of an anisotropic representation of the spatial coordinates of the limb end-point

    Representation of movement velocity in the rat's interpositus nucleus during passive forelimb movements

    No full text
    The interpositus nucleus (IN) receives a large amount of sensory information from the limbs and, in turn, elaborates signals for movement control. In this paper, we tried to gather evidence on the possibility that neurons in the IN may elaborate sensory representations of the forelimb kinematics and, particularly, of the movement velocity vector. For this purpose, the forepaw of anesthetized rats was attached to a computer-controlled robot arm displaced passively along two types of trajectories (circular and figure eight), with the limb joints unconstrained. The firing activity of single cells was recorded and related to limb position and the two components of the movement velocity vector, namely, movement speed and direction. By using multiple regression analysis, we found that 12 out of 85 (14%) neurons were modulated by position, 18 out of 85 (21%) neurons were modulated by direction, 24 out of 85 (28%) neurons were modulated by movement speed, and 31 out of 85 (37%) neurons were sensitive to the full movement velocity vector. Most of the neurons modulated only by the speed component of the velocity vector (19 out of 24) were located in the posterior portion of the IN, whereas neurons in the anterior portion were mostly related to both components of the velocity vector. These results suggest that sensory information related to whole-limb movement velocity may be encoded by the IN, indicating also that the posterior interpositus may preferentially represent movement speed
    corecore