3 research outputs found

    The complete mitochondrial genome of Labeo catla (Hamilton, 1822) using long read sequencing

    No full text
    Labeo catla is a widely cultured species in monoculture and polyculture systems of the Indian subcontinent. In this study, the complete mitochondrial genome sequence of catla was reconstructed from Oxford Nanopore sequence data. The mitochondrial genome is 16,600 bp in length (accession no. is MN830943) which is larger than the previously reported catla mitogenomes. Like other vertebrate mitochondrial genomes, it has 13 protein-coding genes, 22 tRNAs, 2 rRNAs and a putative control region. Most of the mitogenes are encoded on H-strand. Phylogenetic analysis showed that Labeo catla is more closely related to Labeo rohita than other labeo species. The catla mtgenome reported here will facilitate population genetics, phylogenetics and molecular taxonomy of Indian major carps

    Genetic diversity and genome-scale population structure of wild Indian major carp, Labeo catla (Hamilton, 1822), revealed by genotyping-by-sequencing

    Get PDF
    Labeo catla (catla) is the second most commercially important and widely cultured Indian major carp (IMC). It is indigenous to the Indo-Gangetic riverine system of India and the rivers of Bangladesh, Nepal, Myanmar, and Pakistan. Despite the availability of substantial genomic resources in this important species, detailed information on the genome-scale population structure using SNP markers is yet to be reported. In the present study, the identification of genome-wide single nucleotide polymorphisms (SNPs) and population genomics of catla was undertaken by re-sequencing six catla populations of riverine origin from distinct geographical regions. DNA isolated from 100 samples was used to perform genotyping-by-sequencing (GBS). A published catla genome with 95% genome coverage was used as the reference for mapping reads using BWA software. From a total of 472 million paired-end (150 × 2 bp) raw reads generated in this study, we identified 10,485 high-quality polymorphic SNPs using the STACKS pipeline. Expected heterozygosity (He) across the populations ranged from 0.162 to 0.20, whereas observed heterozygosity (Ho) ranged between 0.053 and 0.06. The nucleotide diversity (π) was the lowest (0.168) in the Ganga population. The within-population variation was found to be higher (95.32%) than the among-population (4.68%) variation. However, genetic differentiation was observed to be low to moderate, with Fst values ranging from 0.020 to 0.084, and the highest between Brahmani and Krishna populations. Bayesian and multivariate techniques were used to further evaluate the population structure and supposed ancestry in the studied populations using the structure and discriminant analysis of principal components (DAPC), respectively. Both analyses revealed the existence of two separate genomic clusters. The maximum number of private alleles was observed in the Ganga population. The findings of this study will contribute to a deeper understanding of the population structure and genetic diversity of wild populations of catla for future research in fish population genomics

    Complete mitochondrial genome of nearly threatened freshwater ornamental fish, Microphis deocata and its phylogenetic relationship within Syngnathidae

    No full text
    Microphis deocata (deocata pipefish), belonging to family Syngnathidae, is one of the important indigenous ornamental fish species listed as near threatened in the IUCN red list. Here, we first report the complete mitochondrial genome of deocata pipefish using Illumina next-generation sequencing platform. The total length of the mitogenome is 16,526 bp. It encompasses 13 protein coding genes, 2 ribosomal rRNAs, and 22 tRNAs. The WANCY region (a cluster of five tRNA genes) contains the 50 bp OL light strand origin of replication. Phylogenetic analysis of Syngnathidae revealed M. deocata to cluster with Oostethus manadensis, forming a sister group with Doryrhamphus japonicas and Dunckerocampus dactyliophorus. The mitochondrial genome sequence data generated in the present study will play an important role in population genetic analysis and developing conservation strategies for this species
    corecore