42 research outputs found
The TRILL project: increasing the technological readiness of Laue lenses
Hard X-/soft Gamma-ray astronomy (> 100 keV) is a crucial field for the study
of important astrophysical phenomena such as the 511 keV positron annihilation
line in the Galactic center region and its origin, gamma-ray bursts, soft
gamma-ray repeaters, nuclear lines from SN explosions and more. However,
several key questions in this field require sensitivity and angular resolution
that are hardly achievable with present technology. A new generation of
instruments suitable to focus hard X-/soft Gamma-rays is necessary to overcome
the technological limitations of current direct-viewing telescopes. One
solution is using Laue lenses based on Bragg's diffraction in a transmission
configuration. To date, this technology is in an advanced stage of development
and further efforts are being made in order to significantly increase its
technology readiness level (TRL). To this end, massive production of suitable
crystals is required, as well as an improvement of the capability of their
alignment. Such a technological improvement could be exploited in stratospheric
balloon experiments and, ultimately, in space missions with a telescope of
about 20 m focal length, capable of focusing over a broad energy pass-band. We
present the latest technological developments of the TRILL (Technological
Readiness Increase for Laue Lenses) project, supported by ASI, devoted to the
advancement of the technological readiness of Laue lenses. We show the method
we developed for preparing suitable bent Germanium and Silicon crystals and the
latest advancements in crystals alignment technology.Comment: arXiv admin note: text overlap with arXiv:2211.1688
The absolute calibration strategy of the ASTRI SST-2M telescope proposed for the Cherenkov Telescope Array and its external ground-based illumination system
ASTRI is the end-to-end prototype for the CTA small-size class of telescopes in a dual-mirror configuration (SST-2M) proposed by the Italian National Institute of Astrophysics (INAF) in the framework of the Cherenkov Telescope Array. ASTRI SST-2M has been installed at the Serra La Nave Astrophysical Observatory on Mount Etna (Sicily) and its Performance Verification Phase will start in autumn 2016. For the relative pixel calibration and gain monitoring, the ASTRI SST-2M camera is equipped with an internal illumination device, while an external, portable, illumination system, placed at a few km distance from the telescope, will be used for the absolute end-to-end calibration of the telescope spectral response. Moreover analysis of signals induced in the camera pixels by the night sky background (diffuse emission and reference stars) will be used to monitor the long term evolution of the telescope calibration. We present an overview of the ASTRI SST-2M absolute calibration strategy and the external illuminating device that will be used for its spectral calibratio
Relazione tecnica sulle attività della campagna oceanografica “Evatir 2011”
La campagna oceanografica “Evatir 2011”, condotta a bordo della N/O “G. Dallaporta”, è stata la seconda campagna di valutazione acustica della biomassa pelagica nelle acque del Tirreno condotta grazie alla collaborazione tra i ricercatori dell’IAMC-CNR e del VNIRO di Mosca.
Le ricerche condotte in tale periodo sono state finalizzate principalmente alla valutazione della biomassa e della distribuzione spaziale delle popolazioni di piccoli pelagici.
Le specie target sono le principali specie commerciali di piccoli pelagici in Mediterraneo, ovvero l’acciuga (Engraulis encrasicolus) e la sardina (Sardina pilchardus). Si tratta di specie a ciclo di vita breve caratterizzate da ampie oscillazioni interannuali nella biomassa. Negli anni in cui i livelli di biomassa sono particolarmente bassi l’effetto di un elevato sforzo di pesca porterebbe ad un collasso di tali risorse anche da un anno all’altro.
Il collasso di tali specie è stato ben documentato in letteratura mostrando che i tempi di recupero sono molto lunghi e hanno effetti socio-economici catastrofici anche sulle comunità marinare che vivono grazie agli introiti derivanti dalla pesca e commercializzazione di prodotti in scatola.
Sono stati nel contempo acquisiti dati CTD al fine di studiare possibili influenze delle variabili ambientali sulla distribuzione spaziale delle specie oggetto di studio
Temperature characterization of the CITIROC front-end chip of the ASTRI SST-2M Cherenkov camera
The Cherenkov Imaging Telescope Integrated Read Out Chip, CITIROC, is the front-end chip of the camera for the ASTRI SST-2M, one of the prototypes for the small sized telescopes of the Cherenkov Telescope Array, CTA. The telescope, operating in the energy range from a few TeV to beyond 300 TeV, is characterized by innovative technological solutions. The optical system is arranged in a dual-mirror configuration and the focal plane camera consists of a matrix of multi-pixel Silicon Photo-Multipliers. Among others, one of the most important project issue consists in the thermal characterization of the camera that, in the ASTRI SST-2M prototype, is thermo-controlled in a narrow temperature range. A set of at least nine similar telescopes will form the ASTRI mini-array proposed to be installed at the CTA southern site. In the cameras of the ASTRI mini-array telescopes the thermal control could be relaxed with a considerable gain in terms of power consumption, cost and simplicity. So, a study of the temperature dependence of the camera components is needed. The present work addresses this issue showing the results of the measurements carried out on CITIROC as a function of the temperature. We focused our investigation on the pedestal stability, linearity of the charge output signal, preamplifier gain and trigger uniformity in the temperature range 15-30°C. Our results show, for each of the above-mentioned measurable quantities, that temperature dependency is at the level of a few percent
The ASTRI SST-2M prototype for the Cherenkov Telescope Array: status after the commissioning phase of the telescope
ASTRI SST-2M is an imaging atmospheric Cherenkov telescope developed by the Italian National Institute of Astrophysics (INAF) in the framework of the Cherenkov Telescope Array (CTA) project as an end-to-end prototype for the Small Size array. Large-, medium-, and small-sized telescopes will compose the CTA observatory that represents the next generation of imaging atmospheric Cherenkov telescopes and will explore the very high-energy domain from a few tens of GeV up to few hundreds of TeV. The ASTRI SST-2M telescope has been installed at the INAF-Catania observing station at Serra La Nave, on Mt. Etna (Sicily, Italy) in September 2014. In these 3 years of open-air operations the telescope has been commissioned and its opto-mechanical performance is now well understood. The apparatus was made ready to host its main scientific instrument, the camera with Silicon-Photomultiplier based detectors. This contribution is a status report on the complete ASTRI SST-2M telescope assembly including the electro-mechanical structure and the optical system
ASTRI SST-2M camera electronics
ASTRI SST-2M is an Imaging Atmospheric Cherenkov Telescope (IACT) developed by the Italian National Institute of Astrophysics, INAF. It is the prototype of the ASTRI telescopes proposed to be installed at the southern site of the Cherenkov Telescope Array, CTA. The optical system of the ASTRI telescopes is based on a dual mirror configuration, an innovative solution for IACTs, and the focal plane of the camera is composed of silicon photo-multipliers (SiPM), a recently developed technology for light detection, that exhibit very fast response and an excellent single photoelectron resolution. The ASTRI camera electronics is specifically designed to directly interface the SiPM sensors, detecting the fast pulses produced by the Cherenkov flashes, managing the trigger generation, the digital conversion of the signals and the transmission of the data to an external camera server connected through a LAN. In this contribution we present the general architecture of the camera electronics developed for the ASTRI SST-2M prototype, with special emphasis to some innovative solutions
A population of gamma-ray emitting globular clusters seen with the Fermi Large Area Telescope
Globular clusters with their large populations of millisecond pulsars (MSPs)
are believed to be potential emitters of high-energy gamma-ray emission. Our
goal is to constrain the millisecond pulsar populations in globular clusters
from analysis of gamma-ray observations. We use 546 days of continuous
sky-survey observations obtained with the Large Area Telescope aboard the Fermi
Gamma-ray Space Telescope to study the gamma-ray emission towards 13 globular
clusters. Steady point-like high-energy gamma-ray emission has been
significantly detected towards 8 globular clusters. Five of them (47 Tucanae,
Omega Cen, NGC 6388, Terzan 5, and M 28) show hard spectral power indices and clear evidence for an exponential cut-off in the range
1.0-2.6 GeV, which is the characteristic signature of magnetospheric emission
from MSPs. Three of them (M 62, NGC 6440 and NGC 6652) also show hard spectral
indices , however the presence of an exponential cut-off
can not be unambiguously established. Three of them (Omega Cen, NGC 6388, NGC
6652) have no known radio or X-ray MSPs yet still exhibit MSP spectral
properties. From the observed gamma-ray luminosities, we estimate the total
number of MSPs that is expected to be present in these globular clusters. We
show that our estimates of the MSP population correlate with the stellar
encounter rate and we estimate 2600-4700 MSPs in Galactic globular clusters,
commensurate with previous estimates. The observation of high-energy gamma-ray
emission from a globular cluster thus provides a reliable independent method to
assess their millisecond pulsar populations that can be used to make
constraints on the original neutron star X-ray binary population, essential for
understanding the importance of binary systems in slowing the inevitable core
collapse of globular clusters.Comment: Accepted for publication in A&A. Corresponding authors: J.
Kn\"odlseder, N. Webb, B. Pancraz