16,373 research outputs found
Symmetry energy from the nuclear collective motion: constraints from dipole, quadrupole, monopole and spin-dipole resonances
The experimental and theoretical studies of Giant Resonances, or more
generally of the nuclear collective vibrations, are a well established domain
in which sophisticated techniques have been introduced and firm conclusions
reached after an effort of several decades. From it, information on the nuclear
equation of state can be extracted, albeit not far from usual nuclear
densities. In this contribution, which complements other contributions
appearing in the current volume, we survey some of the constraints that have
been extracted recently concerning the parameters of the nuclear symmetry
energy. Isovector modes, in which neutrons and protons are in opposite phase,
are a natural source of information and we illustrate the values of symmetry
energy around saturation deduced from isovector dipole and isovector quadrupole
states. The isotopic dependence of the isoscalar monopole energy has also been
suggested to provide a connection to the symmetry energy: relevant theoretical
arguments and experimental results are thoroughly discussed. Finally, we
consider the case of the charge-exchange spin-dipole excitations in which the
sum rule associated with the total strength gives in principle access to the
neutron skin and thus, indirectly, to the symmetry energy.Comment: Updated version, with small corrections based on comments/suggestions
from the referee. 12 pages, 9 figures; submitted to EPJA "Special Issue on
Symmetry Energy
Are Panel Unit Root Tests Useful for Real-Time Data?
With the development of real-time databases, N vintages are available for T observations instead of a single realization of the time series process. Although the use of panel unit root tests with the aim to gain in efficiency seems obvious, empirical and simulation results shown in this paper heavily mitigate the intuitive perspective.macroeconomics ;
An experimental study of the sources of fluctuating pressure loads beneath swept shock/boundary-layer interactions
An experimental research program providing basic knowledge and establishing a database on the fluctuating pressure loads produced on aerodynamic surfaces beneath three dimensional shock wave/boundary layer interactions is described. Such loads constitute a fundamental problem of critical concern to future supersonic and hypersonic flight vehicles. A turbulent boundary layer on a flat plate is subjected to interactions with swept planar shock waves generated by sharp fins at angle of attack. Fin angles from 10 to 20 deg at freestream Mach numbers of 3 and 4 produce a variety of interaction strengths from weak to very strong. Miniature Kulite pressure transducers flush-mounted in the flat plate are used to measure interaction-induced wall pressure fluctuations. The distributions of properties of the pressure fluctuations, such as their ring levels, amplitude distributions, and power spectra, are also determined. Measurements were made for the first time in the aft regions of these interactions, revealing fluctuating pressure levels as high as 160 dB. These fluctuations are dominated by low frequency (0-5 kHz) signals. The maximum ring levels in the interactions show an increasing trend with increasing interaction strength. On the other hand, the maximum ring levels in the forward portion of the interactions decrease linearly with increasing interaction sweep back. These ring pressure distributions and spectra are correlated with the features of the interaction flowfield. The unsteadiness of the off-surface flowfield is studied using a new, non-intrusive technique based on the shadow graph method. The results indicate that the entire lambda-shock structure generated by the interaction undergoes relatively low-frequency oscillations. Some regions where particularly strong fluctuations are generated were identified. Fluctuating pressure measurements are also made along the line of symmetry of an axisymmetric jet impinging upon a flat plate at an angle. This flow was chosen as a simple analog to the impinging jet region found in the rear portion of the shock wave/boundary layer interactions under study. It is found that a sharp peak in ring pressure level exists at or near the mean stagnation point. It is suggested that the phenomena responsible for this peak may be active in the swept interactions as well, and may cause the extremely high fluctuating pressures observed in the impinging jet region in the present experimental program
"May I borrow Your Filter?" Exchanging Filters to Combat Spam in a Community
Leveraging social networks in computer systems can be effective in dealing with a number of trust and security issues. Spam is one such issue where the "wisdom of crowds" can be harnessed by mining the collective knowledge of ordinary individuals. In this paper, we present a mechanism through which members of a virtual community can exchange information to combat spam. Previous attempts at collaborative spam filtering have concentrated on digest-based indexing techniques to share digests or fingerprints of emails that are known to be spam. We take a different approach and allow users to share their spam filters instead, thus dramatically reducing the amount of traffic generated in the network. The resultant diversity in the filters and cooperation in a community allows it to respond to spam in an autonomic fashion. As a test case for exchanging filters we use the popular SpamAssassin spam filtering software and show that exchanging spam filters provides an alternative method to improve spam filtering performance
Quantum phase interference (Berry phase) in single-molecule magnets of Mn12
Magnetization measurements of a molecular clusters Mn12 with a spin ground
state of S = 10 show resonance tunneling at avoided energy level crossings. The
observed oscillations of the tunnel probability as a function of the magnetic
field applied along the hard anisotropy axis are due to topological quantum
phase interference of two tunnel paths of opposite windings. Mn12 is therefore
the second molecular clusters presenting quantum phase interference.Comment: 3 pages, 4 figures, MMM'01 conference (12-16 Nov.
Hygrothermal effects on mechanical behavior of graphite/epoxy laminates beyond initial failure
An investigation was conducted to determine the critical load levels and associated cracking beyond which a multidirectional laminate can be considered as structurally failed. Graphite/epoxy laminates were loaded to different strain levels up to ultimate failure. Transverse matrix cracking was monitored by acoustic and optical methods. Residual stiffness and strength that were parallel and perpendicular to the cracks were determined and related to the environmental/loading history. Results indicate that cracking density in the transverse layers has no major effect on laminate residual properties as long as the angle ply layers retain their structural integrity. Exposure to hot water revealed that cracking had only a small effect on absorption and reduced swelling when these specimens were compared with uncracked specimens. Cracked, moist specimens showed a moderate reduction in strength when compared with their uncracked counterparts. Within the range of environmental/loading conditions of the present study, it is concluded that the transverse cracking process is not crucial in its effect on the structural performance of multidirectional composite laminates
Quenched Spin Tunneling and Diabolical Points in Magnetic Molecules: II. Asymmetric Configurations
The perfect quenching of spin tunneling first predicted for a model with
biaxial symmetry, and recently observed in the magnetic molecule Fe_8, is
further studied using the discrete phase integral (or
Wentzel-Kramers-Brillouin) method. The analysis of the previous paper is
extended to the case where the magnetic field has both hard and easy
components, so that the Hamiltonian has no obvious symmetry. Herring's formula
is now inapplicable, so the problem is solved by finding the wavefunction and
using connection formulas at every turning point. A general formula for the
energy surface in the vicinity of the diabolo is obtained in this way. This
formula gives the tunneling apmplitude between two wells unrelated by symmetry
in terms of a small number of action integrals, and appears to be generally
valid, even for problems where the recursion contains more than five terms.
Explicit results are obtained for the diabolical points in the model for Fe_8.
These results exactly parallel the experimental observations. It is found that
the leading semiclassical results for the diabolical points appear to be exact,
and the points themselves lie on a perfect centered rectangular lattice in the
magnetic field space. A variety of evidence in favor of this perfect lattice
hypothesis is presented.Comment: Revtex; 4 ps figures; follow up to cond-mat/000311
The Partial Visibility Representation Extension Problem
For a graph , a function is called a \emph{bar visibility
representation} of when for each vertex , is a
horizontal line segment (\emph{bar}) and iff there is an
unobstructed, vertical, -wide line of sight between and
. Graphs admitting such representations are well understood (via
simple characterizations) and recognizable in linear time. For a directed graph
, a bar visibility representation of , additionally, puts the bar
strictly below the bar for each directed edge of
. We study a generalization of the recognition problem where a function
defined on a subset of is given and the question is whether
there is a bar visibility representation of with for every . We show that for undirected graphs this problem
together with closely related problems are \NP-complete, but for certain cases
involving directed graphs it is solvable in polynomial time.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
- …