94 research outputs found
Oxidative Stress and Exercise
It is now well-established that regular moderate-intensity exercise training can activate salient cell adaptive properties, leading to a state of oxidative eustress [...
Exercise redox biochemistry:conceptual, methodological and technical recommendations
Exercise redox biochemistry is of considerable interest owing to its translational value in health and disease. However, unaddressed conceptual, methodological and technical issues complicate attempts to unravel how exercise alters redox homeostasis in health and disease. Conceptual issues relate to misunderstandings that arise when the chemical heterogeneity of redox biology is disregarded which often complicate attempts to use redox-active compounds and assess redox signalling. Further, that oxidised macromolecule adduct levels reflect formation and repair is seldom considered. Methodological and technical issues relate to the use of out-dated assays and/or inappropriate sample preparation techniques that confound biochemical redox analysis. After considering each of the aforementioned issues, we outline how each issue can be resolved and provide a unifying set of recommendations. We specifically recommend that investigators: consider chemical heterogeneity, use redox-active compounds judiciously, abandon flawed assays, carefully prepare samples and assay buffers, consider repair/metabolism, use multiple biomarkers to assess oxidative damage and redox signalling
Exogenous Plant-Based Nutraceutical Supplementation and Peripheral Cell Mononuclear DNA Damage Following High Intensity Exercise
Plant-based nutraceuticals are categorised as nutritional supplements which contain a high concentration of antioxidants with the intention of minimising the deleterious effect of an oxidative insult. The primary aim of this novel study was to determine the effect of exogenous barley-wheat grass juice (BWJ) on indices of exercise-induced oxidative stress. Ten (n = 10) apparently healthy, recreationally trained (V̇O2max 55.9 ± 6 mL·kg−1·min−1), males (age 22 ± 2 years, height 181 ± 6 cm, weight 87 ± 8 kg, body mass index (BMI) 27 ± 1) volunteered to participant in the study. In a randomised, double-blinded, placebo-controlled crossover design, participants consumed either a placebo, a low dose (70 mL per day) of BWJ, or a high dose (140 mL per day) of BWJ for 7-days. Experimental exercise consisted of a standard maximal oxygen uptake test until volitional fatigue. DNA damage, as assessed by the single cell gel electrophoresis comet assay, increased following high intensity exercise across all groups (time × group; p < 0.05, Effect Size (ES) = 0.7), although there was no selective difference for intervention (p > 0.05). There was a main effect for time in lipid hydroperoxide concentration (pooled-group data, pre- vs. post-exercise, p < 0.05, ES = 0.2) demonstrating that exercise increased lipid peroxidation. Superoxide dismutase activity (SOD) increased by 44.7% following BWJ supplementation (pooled group data, pre- vs. post). The ascorbyl free radical (p < 0.05, ES = 0.26), α-tocopherol (p = 0.007, ES = 0.2), and xanthophyll (p = 0.000, ES = 0.5), increased between the pre- and post-exercise time points indicating a main effect of time. This study illustrates that a 7-day supplementation period of a novel plant-derived nutraceutical product is insufficient at attenuating exercise-induced oxidative damage. It is possible that with a larger sample size, and longer supplementation period, this novel plant-based nutraceutical could potentially offer effective prophylaxis against exercise-induced oxidative stress; as such, this justifies the need for further research
The Effects of Montmorency Tart Cherry ConcentrateSupplementation on Recovery Following Prolonged,Intermittent Exercise
This study investigated Montmorency tart cherry concentrate (MC) supplementation on markers of recovery following prolonged, intermittent sprint activity. Sixteen semi-professional, male soccer players, who had dietary restrictions imposed for the duration of the study, were divided into two equal groups and consumed either MC or placebo (PLA) supplementation for eight consecutive days (30 mL twice per day). On day 5, participants completed an adapted version of the Loughborough Intermittent Shuttle Test (LISTADAPT). Maximal voluntary isometric contraction (MVIC), 20 m Sprint, counter movement jump (CMJ), agility and muscle soreness (DOMS) were assessed at baseline, and 24, 48 and 72 h post-exercise. Measures of inflammation (IL-1-β, IL-6, IL-8, TNF-α, hsCRP), muscle damage (CK) and oxidative stress (LOOH) were analysed at baseline and 1, 3, 5, 24, 48 and 72 h post-exercise. Performance indices (MVIC, CMJ and agility) recovered faster and muscle soreness (DOMS) ratings were lower in the MC group (p < 0.05). Additionally, the acute inflammatory response (IL-6) was attenuated in the MC group. There were no effects for LOOH and CK. These findings suggest MC is efficacious in accelerating recovery following prolonged, repeat sprint activity, such as soccer and rugby, and lends further evidence that polyphenol-rich foods like MC are effective in accelerating recovery following various types of strenuous exercise
High-intensity interval training combined with vibration and dietary restriction Improves body composition and blood lipids in obese adults: a randomized trial
This study aimed to compare the effect of high-intensity interval training (HIIT) with additional whole-body vibration (WBV) on
body composition and lipid profile in obese/overweight adults on a hypocaloric diet. Forty adults were randomly assigned to (a)
HIIT and vibration and hypocaloric diet (HIITWBV, n
ÂĽ
13), (b) HIIT and diet (HIIT, n
ÂĽ
14), and (c) diet only (control [CON],
n
ÂĽ
13). High-intensity interval training WBV participants trained 3 times per week for 8 weeks (6 sets
1 minute of HIIT, cycling
at 90% heart rate peak followed by 1 minute of interset vibration, at a frequency of 18 Hz increasing until 25 Hz with a peak-to-
peak displacement of 4 mm. Training volume increased 1 set every 2 weeks until 10 sets). The HIIT group performed HIIT training
followed by 2 minutes of passive recovery, while the CON continued with their daily activities combined with calorie restriction.
Body composition (body fat and fat-free mass) and biochemical indices (glucose, total cholesterol, high-density lipoprotein
cholesterol, and triglycerides) were determined. Following 8 weeks, body fat was significantly reduced by 7.5% and both tri-
glycerides and total cholesterol decreased in the HIITWBV group only (
16.5% and
11.7% respectively). This study suggests
that HIIT in combination with WBV and a hypocaloric diet can improve overall lipid profile in overweight/obese individual
A Systematic Review of the Acute Effects of Exercise on Immune and Inflammatory Indices in Untrained Adults
BACKGROUND: Cardiovascular disease (CVD) is the leading cause of global mortality. Although the incidence may be reduced with regular exercise, the health benefits of a single bout of exercise on selected CVD risk factors are not well understood. The primary objective of this review is to consider the transient effects of exercise on immune (neutrophil count) and inflammatory (interleukin-6 [IL-6], C-reactive protein [CRP]) markers in untrained adults. METHODS: MEDLINE, EMBASE, CINAHL, Sports Discus and Cochrane were searched for relevant studies published from January 1946 to May 2013. Randomised controlled or crossover studies which measured any of these parameters in untrained but otherwise healthy participants in the 48 h following about of exercise, less than 1 h in duration were included. RESULTS: Ten studies met the inclusion criteria. The results indicate a single bout of aerobic or resistance exercise of moderate to high intensity promotes an increase in IL-6 (145 %) and neutrophil counts (51 %). It appears that 30–60 min of moderate to high intensity exercise is necessary to elicit such changes although variables such as the mode, intensity and pattern of exercise also affect the response. The acute response of CRP within the included studies is equivocal. CONCLUSIONS: Although responses to CRP are inconsistent, a single bout of exercise can increase the activity of both circulating IL-6 and neutrophil counts in untrained adults. These immune and inflammatory responses to a single bout of exercise may be linked to a range of health benefits
Ten “Cheat Codes” for Measuring Oxidative Stress in Humans
Formidable and often seemingly insurmountable conceptual, technical, and methodological challenges hamper the measurement of oxidative stress in humans. For instance, fraught and flawed methods, such as the thiobarbituric acid reactive substances assay kits for lipid peroxidation, rate-limit progress. To advance translational redox research, we present ten comprehensive “cheat codes” for measuring oxidative stress in humans. The cheat codes include analytical approaches to assess reactive oxygen species, antioxidants, biomarkers of oxidative damage and redox regulation. They provide essential conceptual, technical, and methodological information inclusive of curated “do” and “don’t” guidelines. Given the biochemical complexity of oxidative stress, we present a research question-grounded decision tree guide for selecting the most appropriate cheat code (s) to implement in a prospective human experiment. Worked examples demonstrate the benefits of the decision tree-based cheat code selection tool. The ten cheat codes define an invaluable resource for measuring oxidative stress in humans
Ten “Cheat Codes” for Measuring Oxidative Stress in Humans
Formidable and often seemingly insurmountable conceptual, technical, and methodological challenges hamper the measurement of oxidative stress in humans. For instance, fraught and flawed methods, such as the thiobarbituric acid reactive substances assay kits for lipid peroxidation, rate-limit progress. To advance translational redox research, we present ten comprehensive “cheat codes” for measuring oxidative stress in humans. The cheat codes include analytical approaches to assess reactive oxygen species, antioxidants, biomarkers of oxidative damage and redox regulation. They provide essential conceptual, technical, and methodological information inclusive of curated “do” and “don’t” guidelines. Given the biochemical complexity of oxidative stress, we present a research question-grounded decision tree guide for selecting the most appropriate cheat code (s) to implement in a prospective human experiment. Worked examples demonstrate the benefits of the decision tree-based cheat code selection tool. The ten cheat codes define an invaluable resource for measuring oxidative stress in humans
Astaxanthin promotes mitochondrial biogenesis and antioxidant capacity in chronic high-intensity interval training
Purpose: Reactive oxygen and nitrogen species are required for exercise-induced molecular adaptations; however, excessive exercise may cause cellular oxidative distress. We postulate that astaxanthin (ASX) can neutralize oxidative distress and stimulate mitochondrial biogenesis in high-intensity exercise-trained mice. Methods: Six-week-old mice (n = 8/group) were treated with ASX (10 mg/kg BW) or placebo. Training groups participated in 30 min/day high-intensity interval training (HIIT) for 6 weeks. Gastrocnemius muscle was collected and assayed following the exercise training period. Results: Compared to the HIIT control mice, the ASX-treated HIIT mice reduced malonaldehyde levels and upregulated the expression of Nrf2 and FOXO3a. Meanwhile, the genes NQO1 and GCLC, modulated by Nrf2, and SOD2, regulated by FOXO3a, and GPx4, were transcriptionally upregulated in the ASX-treated HIIT group. Meanwhile, the expression of energy sensors, AMPK, SIRT1, and SIRT3, increased in the ASX-treated HIIT group compared to the HIIT control group. Additionally, PGC-1α, regulated by AMPK and SIRT1, was upregulated in the ASX-treated HIIT group. Further, the increased PGC-1α stimulated the transcript of NRF1 and Tfam and mitochondrial proteins IDH2 and ATP50. Finally, the ASX-treated HIIT mice had upregulations in the transcript level of mitochondrial fusion factors, including Mfn1, Mfn2, and OPA1. However, the protein level of AMPK, SIRT1, and FOXO3a, and the transcript level of Nrf2, NQO1, PGC-1α, NRF1, Mfn1, Mfn2, and OPA1 decreased in the HIIT control group compared to the sedentary control group. Conclusion: Supplementation with ASX can reduce oxidative stress and promote antioxidant capacity and mitochondrial biogenesis during strenuous HIIT exercise in mice.</p
- …