7,089 research outputs found

    Performance of concrete-filled stainless steel tubular (CFSST) columns after exposure to fire

    Get PDF
    The post-fire performance of concrete-filled stainless steel tubular (CFSST) columns subjected to an entire loading–fire history, including four characteristic phases: (i) ambient temperature loading, (ii) heating, (iii) cooling with constant external loads, and (iv) post-fire loading, is investigated in this paper. Sequentially coupled thermal-stress analyses are performed using ABAQUS to establish the temperature field and structural response of CFSST columns. To improve the precision of the finite element analysis (FEA) models, the influence of moisture on the thermal conductivity and specific heat of the concrete in the heating and cooling phases is considered by using subroutines. Existing fire and post-fire test data on CFSST columns are used to validate the FEA modelling. Comparisons between FEA and test results indicate that the accuracy of the model is acceptable; the FEA model is then extended to simulate CFSST columns subjected to the four characteristic phases. The behaviour of the CFSST columns during the four characteristic phases is explained by analysis of the temperature distribution, load versus axial deformation relations, failure modes and internal force redistribution. The excellent post-fire performance of CFSST columns is examined in comparison with traditional concrete-filled carbon steel tubular (CFST) columns with the same total cross-sectional area. The residual strength index is studied with respect to a series of parametric analyses. It is found that the residual strength of CFSST columns is higher than that of CFST columns after the same fire exposure, and that the diameter of the stainless steel tube, slenderness, heating time ratio and load ratio have a significant influence on the residual strength index

    Field-Orientation Dependent Heat Capacity Measurements at Low Temperatures with a Vector Magnet System

    Get PDF
    We describe a heat capacity measurement system for the study of the field-orientation dependence for temperatures down to 50 mK. A "Vector Magnet" combined with a mechanical rotator for the dewar enables the rotation of the magnetic field without mechanical heating in the cryostat by friction. High reproducibility of the field direction, as well as an angular resolution of better than 0.01 degree, is obtained. This system is applicable to other kinds of measurements which require a large sample space or an adiabatic sample environment, and can also be used with multiple refrigerator inserts interchangeably.Comment: 7 pages, 8 figure

    Crystal fields, disorder, and antiferromagnetic short-range order in Yb0.24Sn0.76Ru

    Full text link
    We report extensive measurements on a new compound (Yb0.24Sn0.76)Ru that crystallizes in the cubic CsCl structure. Valence band photoemission and L3 x-ray absorption show no divalent component in the 4f configuration of Yb. Inelastic neutron scattering (INS) indicates that the eight-fold degenerate J-multiplet of Yb3+ is split by the crystalline electric field (CEF) into a {\Gamma}7 doublet ground state and a {\Gamma}8 quartet at an excitation energy 20 meV. The magnetic susceptibility can be fit very well by this CEF scheme under the assumption that a {\Gamma}6 excited state resides at 32 meV; however, the {\Gamma}8/{\Gamma}6 transition expected at 12 meV was not observed in the INS. The resistivity follows a Bloch- Gr\"uneisen law shunted by a parallel resistor, as is typical of systems subject to phonon scattering with no apparent magnetic scattering. All of these properties can be understood as representing simple local moment behavior of the trivalent Yb ion. At 1 K, there is a peak in specific heat that is too broad to represent a magnetic phase transition, consistent with absence of magnetic reflections in neutron diffraction. On the other hand, this peak also is too narrow to represent the Kondo effect in the {\Gamma}7 ground state doublet. On the basis of the field-dependence of the specific heat, we argue that antiferromagnetic shortrange order (possibly co-existing with Kondo physics) occurs at low temperatures. The long-range magnetic order is suppressed because the Yb site occupancy is below the percolation threshold for this disordered compound

    Detailed balance has a counterpart in non-equilibrium steady states

    Full text link
    When modelling driven steady states of matter, it is common practice either to choose transition rates arbitrarily, or to assume that the principle of detailed balance remains valid away from equilibrium. Neither of those practices is theoretically well founded. Hypothesising ergodicity constrains the transition rates in driven steady states to respect relations analogous to, but different from the equilibrium principle of detailed balance. The constraints arise from demanding that the design of any model system contains no information extraneous to the microscopic laws of motion and the macroscopic observables. This prevents over-description of the non-equilibrium reservoir, and implies that not all stochastic equations of motion are equally valid. The resulting recipe for transition rates has many features in common with equilibrium statistical mechanics.Comment: Replaced with minor revisions to introduction and conclusions. Accepted for publication in Journal of Physics

    Quantitative model for inferring dynamic regulation of the tumour suppressor gene p53

    Get PDF
    Background: The availability of various "omics" datasets creates a prospect of performing the study of genome-wide genetic regulatory networks. However, one of the major challenges of using mathematical models to infer genetic regulation from microarray datasets is the lack of information for protein concentrations and activities. Most of the previous researches were based on an assumption that the mRNA levels of a gene are consistent with its protein activities, though it is not always the case. Therefore, a more sophisticated modelling framework together with the corresponding inference methods is needed to accurately estimate genetic regulation from "omics" datasets. Results: This work developed a novel approach, which is based on a nonlinear mathematical model, to infer genetic regulation from microarray gene expression data. By using the p53 network as a test system, we used the nonlinear model to estimate the activities of transcription factor (TF) p53 from the expression levels of its target genes, and to identify the activation/inhibition status of p53 to its target genes. The predicted top 317 putative p53 target genes were supported by DNA sequence analysis. A comparison between our prediction and the other published predictions of p53 targets suggests that most of putative p53 targets may share a common depleted or enriched sequence signal on their upstream non-coding region. Conclusions: The proposed quantitative model can not only be used to infer the regulatory relationship between TF and its down-stream genes, but also be applied to estimate the protein activities of TF from the expression levels of its target genes

    Tri-meson-mixing of π\pi-η\eta-η\eta' and ρ\rho-ω\omega-ϕ\phi in the light-cone quark model

    Full text link
    The radiative transition form factors of the pseudoscalar mesons {π\pi, η\eta, η\eta'} and the vector mesons {ρ\rho, ω\omega, ϕ\phi} are restudied with π\pi-η\eta-η\eta' and ρ\rho-ω\omega-ϕ\phi in tri-meson-mixing pattern, which is described by tri-mixing matrices in the light-cone constituent quark model. The experimental transition decay widths are better reproduced with tri-meson-mixing than previous results in a two-mixing-angle scenario of only two-meson η\eta-η\eta' mixing and ω\omega-ϕ\phi mixing.Comment: 8 pages, 6 figures, final version to appear in EPJ
    corecore