1,199 research outputs found
Replica Symmetry Breaking in Attractor Neural Network Models
The phenomenon of replica symmetry breaking is investigated for the retrieval
phases of Hopfield-type network models. The basic calculation is done for the
generalized version of the standard model introduced by Horner [1] and by
Perez-Vicente and Amit [2] which can exhibit low mean levels of neural
activity. For a mean activity the Hopfield model is recovered. In
this case, surprisingly enough, we cannot confirm the well known one step
replica symmetry breaking (1RSB) result for the storage capacity which was
presented by Crisanti, Amit and Gutfreund [3] (\alpha_c^{\hbox{\mf
1RSB}}\simeq 0.144). Rather, we find that 1RSB- and 2RSB-Ans\"atze yield only
slightly increased capacities as compared to the replica symmetric value
(\alpha_c^{\hbox{\mf 1RSB}}\simeq 0.138\,186 and \alpha_c^{\hbox{\mf
2RSB}}\simeq 0.138\,187 compared to \alpha_c^{\hbox{\mf RS}}\simeq
0.137\,905), significantly smaller also than the value \alpha_c^{\hbox{\mf
sim}} = 0.145\pm 0.009 reported from simulation studies. These values still
lie within the recently discovered reentrant phase [4]. We conjecture that in
the infinite Parisi-scheme the reentrant behaviour disappears as is the case in
the SK-spin-glass model (Parisi--Toulouse-hypothesis). The same qualitative
results are obtained in the low activity range.Comment: Latex file, 20 pages, 8 Figures available from the authors upon
request, HD-TVP-94-
Isospin-Violating Meson-Nucleon Vertices as an Alternate Mechanism of Charge-Symmetry Breaking
We compute isospin-violating meson-nucleon coupling constants and their
consequent charge-symmetry-breaking nucleon-nucleon potentials. The couplings
result from evaluating matrix elements of quark currents between nucleon states
in a nonrelativistic constituent quark model; the isospin violations arise from
the difference in the up and down constituent quark masses. We find, in
particular, that isospin violation in the omega-meson--nucleon vertex dominates
the class IV CSB potential obtained from these considerations. We evaluate the
resulting spin-singlet--triplet mixing angles, the quantities germane to the
difference of neutron and proton analyzing powers measured in elastic
scattering, and find them commensurate to those computed
originally using the on-shell value of the - mixing amplitude.
The use of the on-shell - mixing amplitude at has been
called into question; rather, the amplitude is zero in a wide class of models.
Our model possesses no contribution from - mixing at , and
we find that omega-meson exchange suffices to explain the measured
analyzing power difference~at~183 MeV.Comment: 20 pages, revtex, 3 uuencoded PostScript figure
Extracting Br(omega->pi^+ pi^-) from the Time-like Pion Form-factor
We extract the G-parity-violating branching ratio Br(omega->pi^+ pi^-) from
the effective rho-omega mixing matrix element Pi_{rho omega}(s), determined
from e^+e^- -> pi^+ pi^- data. The omega->pi^+ pi^- partial width can be
determined either from the time-like pion form factor or through the constraint
that the mixed physical propagator D_{rho omega}^{mu nu}(s) possesses no poles.
The two procedures are inequivalent in practice, and we show why the first is
preferred, to find finally Br(omega->pi^+ pi^-) = 1.9 +/- 0.3%.Comment: 12 pages (published version
Low-temperature electrical transport in bilayer manganite LaSrMnO
The temperature and magnetic field dependence of anisotropic in-plane
and out-of-plane resistivities have been investigated in
single crystals of the bilayer manganite LaSrMnO.
Below the Curie transition temperature 125 K, and
display almost the same temperature dependence with an up-turn around 50 K. In
the metallic regime (50 K 110 K), both and
follow a dependence, consistent with the two-magnon
scattering. We found that the value of the proportionality coefficient
and the ratio of the exchange interaction obtained
by fitting the data are in excellent agreement with the calculated
based on the two-magnon model and deduced from neutron scattering,
respectively. This provides further support for this scattering mechanism. At
even lower , in the non-metallic regime ( 50 K), {\it both} the in-plane
and out-of-plane conductivities obey a
dependence, consistent with weak localization effects. Hence, this demonstrates
the three-dimensional metallic nature of the bilayer manganite
LaSrMnO at .Comment: 7 pages and 5 figures, accepted for publication in Phys. Rev.
Dressing with Control: using integrability to generate desired solutions to Einstein's equations
21 pages, no figures21 pages, no figures21 pages, no figures21 pages, no figuresMotivated by integrability of the sine-Gordon equation, we investigate a technique for constructing desired solutions to Einstein's equations by combining a dressing technique with a control-theory approach. After reviewing classical integrability, we recall two well-known Killing field reductions of Einstein's equations, unify them using a harmonic map formulation, and state two results on the integrability of the equations and solvability of the dressing system. The resulting algorithm is then combined with an asymptotic analysis to produce constraints on the degrees of freedom arising in the solution-generation mechanism. The approach is carried out explicitly for the Einstein vacuum equations. Applications of the technique to other geometric field theories are also discussed
Evolution of a Holocene delta driven by episodic sediment delivery and coseismic deformation, Puget Sound, Washington, USA
This paper is not subject to U.S. copyright.
The definitive version was published in Sedimentology 53 (2006): 1211-1228, doi:10.1111/j.1365-3091.2006.00809.x.Episodic, large-volume pulses of volcaniclastic sediment and coseismic subsidence of the coast have influenced the development of a late Holocene delta at southern Puget Sound. Multibeam bathymetry, ground-penetrating radar (GPR) and vibracores were used to investigate the morphologic and stratigraphic evolution of the Nisqually River delta. Two fluvial–deltaic facies are recognized on the basis of GPR data and sedimentary characteristics in cores, which suggest partial emplacement from sediment-rich floods that originated on Mount Rainier. Facies S consists of stacked, sheet-like deposits of andesitic sand up to 4 m thick that are continuous across the entire width of the delta. Flat-lying, highly reflective surfaces separate the sand sheets and comprise important facies boundaries. Beds of massive, pumice- and charcoal-rich sand overlie one of the buried surfaces. Organic-rich material from that surface, beneath the massive sand, yielded a radiocarbon age that is time-correlative with a series of known eruptive events that generated lahars in the upper Nisqually River valley. Facies CF consists of linear sandbodies or palaeochannels incised into facies S on the lower delta plain. Radiocarbon ages of wood fragments in the sandy channel-fill deposits also correlate in time to lahar deposits in upstream areas. Intrusive, sand-filled dikes and sills indicate liquefaction caused by post-depositional ground shaking related to earthquakes. Continued progradation of the delta into Puget Sound is currently balanced by tidal-current reworking, which redistributes sediment into large fields of ebb- and flood-oriented bedforms.This study was supported by the Coastal and
Marine Geology Program, and the Earthquake
Hazards Program of the U.S. Geological Survey
Young and Intermediate-age Distance Indicators
Distance measurements beyond geometrical and semi-geometrical methods, rely
mainly on standard candles. As the name suggests, these objects have known
luminosities by virtue of their intrinsic proprieties and play a major role in
our understanding of modern cosmology. The main caveats associated with
standard candles are their absolute calibration, contamination of the sample
from other sources and systematic uncertainties. The absolute calibration
mainly depends on their chemical composition and age. To understand the impact
of these effects on the distance scale, it is essential to develop methods
based on different sample of standard candles. Here we review the fundamental
properties of young and intermediate-age distance indicators such as Cepheids,
Mira variables and Red Clump stars and the recent developments in their
application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in
Space Science Reviews (Chapter 3 of a special collection resulting from the
May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space
Age
Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits
The WWgamma triple gauge boson coupling parameters are studied using p-pbar
-> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were
collected with the DO detector from an integrated luminosity of 162 pb^{-1}
delivered by the Fermilab Tevatron Collider. The cross section times branching
fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV
and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum)
pb. The one-dimensional 95% confidence level limits on anomalous couplings are
-0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events
We present a measurement of the top quark pair ttbar production cross section
in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1}
of data collected by the DO detector at the Fermilab Tevatron Collider. We
select events with one charged lepton (electron or muon), large missing
transverse energy, and at least four jets, and extract the ttbar content of the
sample based on the kinematic characteristics of the events. For a top quark
mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1}
(syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
- …