25,327 research outputs found

    An Electronically Reconfigurable Patch Antenna Design for Polarization Diversity with Fixed Resonant Frequency

    Get PDF
    In this paper, an electronically polarization reconfigurable circular patch antenna with fixed resonant frequency operating at Wireless Local Area Network (WLAN) frequency band (2.4-2.48 GHz) is presented. The structure of the proposed design consists of a circular patch as a radiating element fed by coaxial probe, cooperated with four equal-length slits etched on the edge along x-axis and y-axis. A total of four switches was used and embedded across the slits at specific locations, thus controlled the length of the slits. By activating and deactivating the switches (ON and OFF) across the slits, the current on the patch is changed, thus modifying the electric field and polarization of the antenna. Consequently, the polarization excited by the proposed antenna can be switched into three types, either linear polarization, left-hand circular polarization or right-hand circular polarization. This paper proposes a simple approach that able to switch the polarizations and excited at the same operating frequency. Simulated and measured results of ideal case (using copper strip switches) and real case (using PIN diode switches) are compared and presented to demonstrate the performance of the antenna

    Counts and Sizes of Galaxies in the Hubble Deep Field - South: Implications for the Next Generation Space Telescope

    Full text link
    Science objectives for the Next Generation Space Telescope (NGST) include a large component of galaxy surveys, both imaging and spectroscopy. The Hubble Deep Field datasets include the deepest observations ever made in the ultraviolet, optical and near infrared, reaching depths comparable to that expected for NGST spectroscopy. We present the source counts, galaxy sizes and isophotal filling factors of the HDF-South images. The observed integrated galaxy counts reach >500 galaxies per square arcminute at AB<30. We extend these counts to faint levels in the infrared using models. The trend previously seen that fainter galaxies are smaller, continues to AB=29 in the high resolution HDF-S STIS image, where galaxies have a typical half-light radius of 0.1 arcseconds. Extensive Monte Carlo simulations show that the small measured sizes are not due to selection effects until >29mag. Using the HDF-S NICMOS image, we show that galaxies are smaller in the near infrared than they are in the optical. We analyze the isophotal filling factor of the HDF-S STIS image, and show that this image is mostly empty sky even at the limits of galaxy detection, a conclusion we expect to hold true for NGST spectroscopy. At the surface brightness limits expected for NGST imaging, however, about a quarter of the sky is occupied by the outer isophotes of AB<30 galaxies. We discuss the implications of these data on several design concepts of the NGST near-infrared spectrograph. We compare the effects of resolution and the confusion limit of various designs, as well as the multiplexing advantages of either multi-object or full-field spectroscopy. We argue that the optimal choice for NGST spectroscopy of high redshift galaxies is a multi-object spectrograph (MOS) with target selection by a micro electro mechanical system (MEMS) device.Comment: 27 pages including 10 figures, accepted for publication in the Astronomical Journal, June 2000, abridged abstrac

    Parisi Phase in a Neuron

    Full text link
    Pattern storage by a single neuron is revisited. Generalizing Parisi's framework for spin glasses we obtain a variational free energy functional for the neuron. The solution is demonstrated at high temperature and large relative number of examples, where several phases are identified by thermodynamical stability analysis, two of them exhibiting spontaneous full replica symmetry breaking. We give analytically the curved segments of the order parameter function and in representative cases compute the free energy, the storage error, and the entropy.Comment: 4 pages in prl twocolumn format + 3 Postscript figures. Submitted to Physical Review Letter

    Statistical Mechanics of Learning in the Presence of Outliers

    Full text link
    Using methods of statistical mechanics, we analyse the effect of outliers on the supervised learning of a classification problem. The learning strategy aims at selecting informative examples and discarding outliers. We compare two algorithms which perform the selection either in a soft or a hard way. When the fraction of outliers grows large, the estimation errors undergo a first order phase transition.Comment: 24 pages, 7 figures (minor extensions added

    Correlations between hidden units in multilayer neural networks and replica symmetry breaking

    Full text link
    We consider feed-forward neural networks with one hidden layer, tree architecture and a fixed hidden-to-output Boolean function. Focusing on the saturation limit of the storage problem the influence of replica symmetry breaking on the distribution of local fields at the hidden units is investigated. These field distributions determine the probability for finding a specific activation pattern of the hidden units as well as the corresponding correlation coefficients and therefore quantify the division of labor among the hidden units. We find that although modifying the storage capacity and the distribution of local fields markedly replica symmetry breaking has only a minor effect on the correlation coefficients. Detailed numerical results are provided for the PARITY, COMMITTEE and AND machines with K=3 hidden units and nonoverlapping receptive fields.Comment: 9 pages, 3 figures, RevTex, accepted for publication in Phys. Rev.

    Existence and stability of hole solutions to complex Ginzburg-Landau equations

    Full text link
    We consider the existence and stability of the hole, or dark soliton, solution to a Ginzburg-Landau perturbation of the defocusing nonlinear Schroedinger equation (NLS), and to the nearly real complex Ginzburg-Landau equation (CGL). By using dynamical systems techniques, it is shown that the dark soliton can persist as either a regular perturbation or a singular perturbation of that which exists for the NLS. When considering the stability of the soliton, a major difficulty which must be overcome is that eigenvalues may bifurcate out of the continuous spectrum, i.e., an edge bifurcation may occur. Since the continuous spectrum for the NLS covers the imaginary axis, and since for the CGL it touches the origin, such a bifurcation may lead to an unstable wave. An additional important consideration is that an edge bifurcation can happen even if there are no eigenvalues embedded in the continuous spectrum. Building on and refining ideas first presented in Kapitula and Sandstede (Physica D, 1998) and Kapitula (SIAM J. Math. Anal., 1999), we show that when the wave persists as a regular perturbation, at most three eigenvalues will bifurcate out of the continuous spectrum. Furthermore, we precisely track these bifurcating eigenvalues, and thus are able to give conditions for which the perturbed wave will be stable. For the NLS the results are an improvement and refinement of previous work, while the results for the CGL are new. The techniques presented are very general and are therefore applicable to a much larger class of problems than those considered here.Comment: 41 pages, 4 figures, submitte

    Stability in microcanonical many-body spin glasses

    Full text link
    We generalize the de Almeida-Thouless line for the many-body Ising spin glass to the microcanonical ensemble and show that it coincides with the canonical one. This enables us to draw a complete microcanonical phase diagram of this model

    Learners reconceptualising education: Widening participation through creative engagement?

    No full text
    This paper argues that engaging imaginatively with ways in which statutory and further education is provided and expanding the repertoire of possible transitions into higher education, is necessary for providers both in higher education and in the contexts and phases which precede study at this level. Fostering dispositions for creativity in dynamic engagement with educational technology together with the consideration of pedagogy, learning objects, inclusion, policy and the management of change, requires innovative provision to span the spaces between school, home, work and higher education learning. Reporting on The Aspire Pilot, a NESTA-funded initiative at The Open University, the paper offers the beginning of a theoretical frame for considering learning, learners and learning systems in the information age prioritizing learner agency. It will report emergent empirical findings from this inter-disciplinary project, with a significant e-dimension, which seeks to foster the creativity of 13-19 year olds in considering future learning systems, developing provocations for others to explore creative but grounded possibilities. It explores implications arising from this project for approaches that may facilitate widening participation in higher education

    Multilayer neural networks with extensively many hidden units

    Full text link
    The information processing abilities of a multilayer neural network with a number of hidden units scaling as the input dimension are studied using statistical mechanics methods. The mapping from the input layer to the hidden units is performed by general symmetric Boolean functions whereas the hidden layer is connected to the output by either discrete or continuous couplings. Introducing an overlap in the space of Boolean functions as order parameter the storage capacity if found to scale with the logarithm of the number of implementable Boolean functions. The generalization behaviour is smooth for continuous couplings and shows a discontinuous transition to perfect generalization for discrete ones.Comment: 4 pages, 2 figure
    corecore