47 research outputs found

    Genetic Studies of a Cluster of Acute Lymphoblastic Leukemia Cases in Churchill County, Nevada

    Get PDF
    OBJECTIVE: In a study to identify exposures associated with 15 cases of childhood leukemia, we found levels of tungsten, arsenic, and dichlorodiphenyldichloroethylene in participants to be higher than mean values reported in the National Report on Human Exposure to Environmental Chemicals. Because case and comparison families had similar levels of these contaminants, we conducted genetic studies to identify gene polymorphisms that might have made case children more susceptible than comparison children to effects of the exposures. DESIGN: We compared case with comparison children to determine whether differences existed in the frequency of polymorphic genes, including genes that code for enzymes in the folate and purine pathways. We also included discovery of polymorphic forms of genes that code for enzymes that are inhibited by tungsten: xanthine dehydrogenase, sulfite oxidase (SUOX gene), and aldehyde oxidase. PARTICIPANTS: Eleven case children were age- and sex-matched with 42 community comparison children for genetic analyses. Twenty parents of case children also contributed to the analyses. RESULTS: One bilalleleic gene locus in SUOX was significantly associated with either case or comparison status, depending on which alleles the child carried (without adjusting for multiple comparisons). CONCLUSIONS: Although genetic studies did not provide evidence that a common agent or genetic susceptibility factor caused the leukemias, the association between a SUOX gene locus and disease status in the presence of high tungsten and arsenic levels warrants further investigation. RELEVANCE: Although analyses of community clusters of cancer have rarely identified causes, these findings have generated hypotheses to be tested in subsequent studies

    Glutathione-S-transferases in lung and sputum specimens, effects of smoking and COPD severity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxidative stress plays a potential role in the pathogenesis and progression of chronic obstructive pulmonary disease (COPD). Glutathione S-transferases (GSTs) detoxify toxic compounds in tobacco smoke via glutathione-dependent mechanisms. Little is known about the regulation and expression of GSTs in COPD lung and their presence in airway secretions.</p> <p>Methods</p> <p>GST alpha, pi and mu were investigated by immunohistochemistry in 72 lung tissue specimens and by Western analysis in total lung homogenates and induced sputum supernatants from non-smokers, smokers and patients with variable stages of COPD severity.</p> <p>Results</p> <p>GST alpha was expressed mainly in the airway epithelium. The percentage of GST alpha positive epithelial cells was lower in the central airways of patients with very severe (Stage IV) COPD compared to mild/moderate COPD (p = 0.02). GST alpha by Western analysis was higher in the total lung homogenates in mild/moderate COPD compared to cases of very severe disease (p < 0.001). GST pi was present in airway and alveolar epithelium as well as in alveolar macrophages. GST mu was expressed mainly in the epithelium. Both GST alpha and pi were detectable in sputum supernatants especially in patients with COPD.</p> <p>Conclusion</p> <p>This study indicates the presence of GST alpha and pi especially in the epithelium and sputum supernatants in mild/moderate COPD and low expression of GST alpha in the epithelium in cases of very severe COPD. The presence of GSTs in the airway secretions points to their potential protective role both as intracellular and extracellular mediators in human lung.</p
    corecore