8,365 research outputs found
Evaluation of heating effects on atoms trapped in an optical trap
We solve a stochastic master equation based on the theory of Savard et al. [T. A. Savard. K. M. O'Hara, and J. E. Thomas, Phys, Rev. A 56, R1095 (1997)] for heating arising from fluctuations in the trapping laser intensity. We compare with recent experiments of Ye et al. [J. Ye, D. W. Vernooy, and H. J. Kimble, Phys. Rev. Lett. 83, 4987 (1999)], and find good agreement with the experimental measurements of the distribution of trap occupancy times. The major cause of trap loss arises from the broadening of the energy distribution of the trapped atom, rather than the mean heating rate, which is a very much smaller effect
Quantum kinetic theory VII: The influence of vapor dynamics on condensate growth
We extend earlier models of the growth of a Bose-Einstein condensate to
include the full dynamical effects of the thermal cloud by numerically solving
a modified quantum Boltzmann equation. We determine the regime in which the
assumptions of the simple model are a reasonable approximation, and compare our
new results with those that were earlier compared with experimental data. We
find good agreement with our earlier modelling, except at higher condensate
fractions, for which a significant speedup is found. We also investigate the
effect of temperature on condensate growth, and find that this has a
surprisingly small effect.
The discrepancy between theory and experiment remains, since the speedup
found in these computations does not occur in the parameter regime specified in
the the experiment.Comment: Fourteen pages, TeX source with 11 figures. Changes : Extended
section on formalism to include a derivation of the ergodic Boltzmann
equation that we use, and a fuller explanation of the numerical methods.
Explained more fully the possible errors with the experimental data. Added
section detailing the source of possible errors in this formulation. Added
comparison of our work with the manuscript cond-mat/0001323, and some
analysis of the fits to the MIT growth curve
Number-Phase Wigner Representation for Efficient Stochastic Simulations
Phase-space representations based on coherent states (P, Q, Wigner) have been
successful in the creation of stochastic differential equations (SDEs) for the
efficient stochastic simulation of high dimensional quantum systems. However
many problems using these techniques remain intractable over long integrations
times. We present a number-phase Wigner representation that can be unraveled
into SDEs. We demonstrate convergence to the correct solution for an anharmonic
oscillator with small dampening for significantly longer than other phase space
representations. This process requires an effective sampling of a non-classical
probability distribution. We describe and demonstrate a method of achieving
this sampling using stochastic weights.Comment: 7 pages, 1 figur
Quantum turbulence in condensate collisions: an application of the classical field method
We apply the classical field method to simulate the production of correlated
atoms during the collision of two Bose-Einstein condensates. Our
non-perturbative method includes the effect of quantum noise, and provides for
the first time a theoretical description of collisions of high density
condensates with very large out-scattered fractions. Quantum correlation
functions for the scattered atoms are calculated from a single simulation, and
show that the correlation between pairs of atoms of opposite momentum is rather
small. We also predict the existence of quantum turbulence in the field of the
scattered atoms--a property which should be straightforwardly measurable.Comment: 5 pages, 3 figures: Rewritten text, replaced figure
Diagnosis of antiphospholipid syndrome in routine clinical practice.
The updated international consensus criteria for definite antiphospholipid syndrome (APS) are useful for scientific clinical studies. However, there remains a need for diagnostic criteria for routine clinical use. We audited the results of routine antiphospholipid antibodies (aPLs) in a cohort of 193 consecutive patients with aPL positivity-based testing for lupus anticoagulant (LA), IgG and IgM anticardiolipin (aCL) and anti-ß(2)glycoprotein-1 antibodies (aß(2)GPI). Medium/high-titre aCL/aβ(2)GPI was defined as >99th percentile. Low-titre aCL/aβ(2)GPI positivity (>95(th )< 99(th) percentile) was considered positive for obstetric but not for thrombotic APS. One hundred of the 145 patients fulfilled both clinical and laboratory criteria for definite APS. Twenty-six women with purely obstetric APS had persistent low-titre aCL and/or aβ(2)GPI. With the inclusion of these patients, 126 of the 145 patients were considered to have APS. Sixty-seven out of 126 patients were LA-negative, of whom 12 had aCL only, 37 had aβ(2)GPI only and 18 positive were for both. The omission of aCL or aβ(2)GPI testing from investigation of APS would have led to a failure to diagnose APS in 9.5% and 29.4% of patients, respectively. Our data suggest that LA, aCL and aβ(2)GPI testing are all required for the accurate diagnosis of APS and that low-titre antibodies should be included in the diagnosis of obstetric APS
Disruption of reflecting Bose-Einstein condensates due to inter-atomic interactions and quantum noise
We perform fully three-dimensional simulations, using the truncated Wigner
method, to investigate the reflection of Bose-Einstein condensates from abrupt
potential barriers. We show that the inter-atomic interactions can disrupt the
internal structure of a cigar-shaped cloud with a high atom density at low
approach velocities, damping the center-of-mass motion and generating vortices.
Furthermore, by incorporating quantum noise we show that scattering halos form
at high approach velocities, causing an associated condensate depletion. We
compare our results to recent experimental observations.Comment: 5 figure
Quantum turbulence and correlations in Bose-Einstein condensate collisions
We investigate numerically simulated collisions between experimentally
realistic Bose-Einstein condensate wavepackets, within a regime where highly
populated scattering haloes are formed. The theoretical basis for this work is
the truncated Wigner method, for which we present a detailed derivation, paying
particular attention to its validity regime for colliding condensates. This
paper is an extension of our previous Letter [A. A. Norrie, R. J. Ballagh, and
C. W. Gardiner, Phys. Rev. Lett. 94, 040401 (2005)] and we investigate both
single-trajectory solutions, which reveal the presence of quantum turbulence in
the scattering halo, and ensembles of trajectories, which we use to calculate
quantum-mechanical correlation functions of the field
Quantum Kinetic Theory VI: The Growth of a Bose-Einstein Condensate
A detailed analysis of the growth of a BEC is given, based on quantum kinetic
theory, in which we take account of the evolution of the occupations of lower
trap levels, and of the full Bose-Einstein formula for the occupations of
higher trap levels, as well as the Bose stimulated direct transfer of atoms to
the condensate level introduced by Gardiner et al. We find good agreement with
experiment at higher temperatures, but at lower temperatures the experimentally
observed growth rate is somewhat more rapid. We also confirm the picture of the
``kinetic'' region of evolution, introduced by Kagan et al., for the time up to
the initiation of the condensate. The behavior after initiation essentially
follows our original growth equation, but with a substantially increased rate
coefficient.
Our modelling of growth implicitly gives a model of the spatial shape of the
condensate vapor system as the condensate grows, and thus provides an
alternative to the present phenomenological fitting procedure, based on the sum
of a zero-chemical potential vapor and a Thomas-Fermi shaped condensate. Our
method may give substantially different results for condensate numbers and
temperatures obtained from phenomentological fits, and indicates the need for
more systematic investigation of the growth dynamics of the condensate from a
supersaturated vapor.Comment: TeX source; 29 Pages including 26 PostScript figure
Lower limit on the achievable temperature in resonator-based sideband cooling
A resonator can be effectively used as a cooler for another linear oscillator
with a much smaller frequency. A huge cooling effect, which could be used to
cool a mechanical oscillator below the energy of quantum fluctuations, has been
predicted by several authors. However, here we show that there is a lower limit
T* on the achievable temperature that was not considered in previous works and
can be higher than the quantum limit in realistic experimental realizations. We
also point out that the decay rate of the resonator, which previous studies
stress should be small, must be larger than the decay rate of the cooled
oscillator for effective cooling.Comment: 6 pages, 4 figures, uses psfra
- …