5,040 research outputs found
Quantum Kinetic Theory VI: The Growth of a Bose-Einstein Condensate
A detailed analysis of the growth of a BEC is given, based on quantum kinetic
theory, in which we take account of the evolution of the occupations of lower
trap levels, and of the full Bose-Einstein formula for the occupations of
higher trap levels, as well as the Bose stimulated direct transfer of atoms to
the condensate level introduced by Gardiner et al. We find good agreement with
experiment at higher temperatures, but at lower temperatures the experimentally
observed growth rate is somewhat more rapid. We also confirm the picture of the
``kinetic'' region of evolution, introduced by Kagan et al., for the time up to
the initiation of the condensate. The behavior after initiation essentially
follows our original growth equation, but with a substantially increased rate
coefficient.
Our modelling of growth implicitly gives a model of the spatial shape of the
condensate vapor system as the condensate grows, and thus provides an
alternative to the present phenomenological fitting procedure, based on the sum
of a zero-chemical potential vapor and a Thomas-Fermi shaped condensate. Our
method may give substantially different results for condensate numbers and
temperatures obtained from phenomentological fits, and indicates the need for
more systematic investigation of the growth dynamics of the condensate from a
supersaturated vapor.Comment: TeX source; 29 Pages including 26 PostScript figure
Quantum turbulence in condensate collisions: an application of the classical field method
We apply the classical field method to simulate the production of correlated
atoms during the collision of two Bose-Einstein condensates. Our
non-perturbative method includes the effect of quantum noise, and provides for
the first time a theoretical description of collisions of high density
condensates with very large out-scattered fractions. Quantum correlation
functions for the scattered atoms are calculated from a single simulation, and
show that the correlation between pairs of atoms of opposite momentum is rather
small. We also predict the existence of quantum turbulence in the field of the
scattered atoms--a property which should be straightforwardly measurable.Comment: 5 pages, 3 figures: Rewritten text, replaced figure
Theory of the Ramsey spectroscopy and anomalous segregation in ultra-cold rubidium
The recent anomalous segregation experiment of Lewandowski et al. (PRL, 88,
070403, 2002) shows dramatic, rapid internal state segregation for two
hyperfine levels of rubidium. We simulate an effective one dimensional model of
the system for experimental parameters and find reasonable agreement with the
data. The Ramsey frequency is found to be insensitive to the decoherence of the
superposition, and is only equivalent to the interaction energy shift for a
pure superposition. A Quantum Boltzmann equation describing collisions is
derived using Quantum Kinetic Theory, taking into account the different
scattering lengths of the internal states. As spin-wave experiments are likely
to be attempted at lower temperatures we examine the effect of degeneracy on
decoherence by considering the recent experiment of Lewandowski et al. where
degeneracy is around 10%. We also find that the segregation effect is only
possible when transport terms are included in the equations of motion, and that
the interactions only directly alter the momentum distributions of the states.
The segregation or spin wave effect is thus entirely due to coherent atomic
motion as foreseen in the experimental reportComment: 26 pages, 4 figures, to be published in J. Phys.
The church in the Roman Empire under the Constantians
The Church and State came first into relationships of
alliance during the reign of Constantine, and thus the events, which occurred then and immediately thereafter, present us with a field of study wherein we may hope to discover the essential
principles of their antagonism and their co- partnership. With the
purpose of studying those principles in action this study of
"The Church in the Roman Empire under the Constantians" has been
undertaken. Our attempt is to trace the various phases of policy
adopted by the successive emperors towards the Church and to
elucidate their motives, character and tendencies, and also to
exhibit how the Church reacted under these influences and developed
her own distinctive principles of polity in the process of
adjusting herself to the new relations. The surprising feature of
this age was not that the Empire adopted the new religion, but that some quality in the new faith kept the church in isolation from the
general administration and left her an allied but equal sovereign
power. The principles which caused her to seek to do this and
the methods by which she accomplished it are, we consider, our main concern in dealing with this period of history. We have
also sought to show how the various points of controversy emerged
one by one, which have formed the subject of debate upon the
question of Church and State from that day to this. How the
early Fourth Century Church dealt with them and her opinion upon
them may not certainly be regarded as determinative, but it cannot
but be important for the student of the subject. We have thus
attempted to analyse her consciousness upon these topics with
particular care. Of necessity in our attempt to elucidate the
details of our special subject there has had to be said much about
the Arian controversy and other general subjects connected with
these reigns. Our effort has not been, however, to deal with the
theological aspects of that great debate or to put on record a general narrative of events throughout our period, but to present a special study of the effects of the impact of the two great forces
brought into contact by the policy of the Constantians. The general
history of the time and especially that of the krian controversy
have formed the subject of very many special works, but so far as
is known to the author, a review of the period from our special
point of view,while forming the subject of chapters or portions of
larger works has not been itself delimited for a special review,
and where it has been so treated,has been often marred by an
excessive Roman Catholic partisanship or by a superficial acceptance
of the current idea that the story is entirely one of decadent
secularisation. Ordinary text -books are content with this word
without further enquiry as to what secularisation may mean and
wherein its evil consists. Our effort has been to probe into this process of secularisation in order to discover what elements in it were the
Church's protective armour to resist the encroachment of the world and what the effects of that encroachment itself, also we have sought to consider what was her attitude to the new duties made possible by State alliance and to the new resources opened up to her by that alliance, and have endeavoured to detect what her conception of her spiritual autonomy might be, and what amount of accomodation it would by methods and ideals of government, she thought consistent therewith. As her absorbing problem was the theological one we
have no theoretical statement upon this topic,
for St. Augustine's De Civitate Dei is the first elaborate pronouncement upon the subject. It marks in our opinion , however, a certain modification of view suggested by the
St .Augustine's fall of Rome. The earlier one can only be extracted from fugitive
statements or from inferences drawn from her actions. The feelings
bred by the first period of her interrelation are however so important in our opinion that they justify close consideration of
this sort
Disruption of reflecting Bose-Einstein condensates due to inter-atomic interactions and quantum noise
We perform fully three-dimensional simulations, using the truncated Wigner
method, to investigate the reflection of Bose-Einstein condensates from abrupt
potential barriers. We show that the inter-atomic interactions can disrupt the
internal structure of a cigar-shaped cloud with a high atom density at low
approach velocities, damping the center-of-mass motion and generating vortices.
Furthermore, by incorporating quantum noise we show that scattering halos form
at high approach velocities, causing an associated condensate depletion. We
compare our results to recent experimental observations.Comment: 5 figure
Quadripartite continuous-variable entanglement via quadruply concurrent downconversion
We investigate an intra-cavity coupled down-conversion scheme to generate
quadripartite entanglement using concurrently resonant nonlinearities. We
verify that quadripartite entanglement is present in this system by calculating
the output fluctuation spectra and then considering violations of optimized
inequalities of the van Loock-Furusawa type. The entanglement characteristics
both above and below the oscillation threshold are considered. We also present
analytic solutions for the quadrature operators and the van Loock-Furusawa
correlations in the undepleted pump approximation.Comment: 9 pages, 5 figure
Nuclear quantum effects in solids using a colored-noise thermostat
We present a method, based on a non-Markovian Langevin equation, to include
quantum corrections to the classical dynamics of ions in a quasi-harmonic
system. By properly fitting the correlation function of the noise, one can vary
the fluctuations in positions and momenta as a function of the vibrational
frequency, and fit them so as to reproduce the quantum-mechanical behavior,
with minimal a priori knowledge of the details of the system. We discuss the
application of the thermostat to diamond and to ice Ih. We find that results in
agreement with path-integral molecular dynamics can be obtained using only a
fraction of the computational effort.Comment: submitted for publicatio
Tripartite entanglement and threshold properties of coupled intracavity downconversion and sum-frequency generation
The process of cascaded downconversion and sum-frequency generation inside an
optical cavity has been predicted to be a potential source of three-mode
continuous-variable entanglement. When the cavity is pumped by two fields, the
threshold properties have been analysed, showing that these are more
complicated than in well-known processes such as optical parametric
oscillation. When there is only a single pumping field, the entanglement
properties have been calculated using a linearised fluctuation analysis, but
without any consideration of the threshold properties or critical operating
points of the system. In this work we extend this analysis to demonstrate that
the singly pumped system demonstrates a rich range of threshold behaviour when
quantisation of the pump field is taken into account and that asymmetric
polychromatic entanglement is available over a wide range of operational
parameters.Comment: 24 pages, 15 figure
Three-body recombination of ultracold Bose gases using the truncated Wigner method
We apply the truncated Wigner method to the process of three-body
recombination in ultracold Bose gases. We find that within the validity regime
of the Wigner truncation for two-body scattering, three-body recombination can
be treated using a set of coupled stochastic differential equations that
include diffusion terms, and can be simulated using known numerical methods. As
an example we investigate the behaviour of a simple homogeneous Bose gas.Comment: Replaced paper same as original; correction to author list on
cond-mat mad
Theory of the cold collision frequency shift in 1S--2S spectroscopy of Bose-Einstein-condensed and non-condensed hydrogen
We show that a correct formulation of the cold collision frequency shift for
two photon spectroscopy of Bose-condensed and cold non-Bose-condensed hydrogen
is consistent with experimental data. Our treatment includes transport and
inhomogeneity into the theory of a non-condensed gas, which causes substantial
changes in the cold collision frequency shift for the ordinary thermal gas, as
a result of the very high frequency (3.9kHz) of transverse trap mode. For the
condensed gas, we find substantial corrections arise from the inclusion of
quasiparticles, whose number is very large because of the very low frequency
(10.2Hz) of the longitudinal trap mode. These two effects together account for
the apparent absence of a "factor of two" between the two possibilities.
Our treatment considers only the Doppler-free measurements, but could be
extended to Doppler-sensitive measurements. For Bose-condensed hydrogen, we
predict a characteristic "foot" extending into higher detunings than can arise
from the condensate alone, as a result of a correct treatment of the statistics
of thermal quasiparticles.Comment: 16 page J Phys B format plus 6 postscript figure
- …