216 research outputs found

    Saffman-Taylor fingers with kinetic undercooling

    Get PDF
    The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularisation on the interface is not provided by surface tension, but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalise high velocities and prevent blow-up of the unregularised solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this 'selection' of 1/2 by kinetic undercooling is qualitatively similar to the well-known analogue with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analogue with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension, and numerically taking the limit that the surface tension vanishes.Comment: 10 pages, 6 figures, accepted for publication by Physical Review

    Parametrization of projector-based witnesses for bipartite systems

    Full text link
    Entanglement witnesses are nonpositive Hermitian operators which can detect the presence of entanglement. In this paper, we provide a general parametrization for orthonormal basis of Cn{\mathbb C}^n and use it to construct projector-based witness operators for entanglement detection in the vicinity of pure bipartite states. Our method to parameterize entanglement witnesses is operationally simple and could be used for doing symbolic and numerical calculations. As an example we use the method for detecting entanglement between an atom and the single mode of quantized field, described by the Jaynes-Cummings model. We also compare the detection of witnesses with the negativity of the state, and show that in the vicinity of pure stats such constructed witnesses able to detect entanglement of the state.Comment: 12 pages, four figure

    Quantum computing with neutral atoms

    Get PDF
    We develop a method to entangle neutral atoms using cold controlled collisions. We analyze this method in two particular set-ups: optical lattices and magnetic micro-traps. Both offer the possibility of performing certain multi-particle operations in parallel. Using this fact, we show how to implement efficient quantum error correction and schemes for fault-tolerant computing.Comment: 21 pages, 19 figure

    Regional Hemodynamic Effects of Neutral Endopeptidase Inhibition and Angiotensin (AT 1 ) Receptor Antagonism Alone or in Combination in Conscious Spontaneously Hypertensive Rats

    Get PDF
    ABSTRACT We tested the hypothesis that angiotensin (AT 1 ) receptor antagonism (with losartan) would enhance the cardiovascular actions of neutral endopeptidase (NEP) inhibition [with candoxatrilat or (2S)-2-{[1-({[(1S)-1-carboxy-2-(5-phenyl-1,3-oxazol-2-yl)ethyl]amino}carbonyl)cyclopentyl]methyl}-4-methoxybutanoic acid (UK-489,329)] in conscious spontaneously hypertensive rats (SHR). Four-day continuous intravenous infusion of candoxatrilat (1.9 g kg Ϫ1 min Ϫ1 ) or UK-489,329 (0.15 g kg Ϫ1 min Ϫ1 ) had no significant cardiovascular effects, whereas candoxatrilat (6.4 g kg Ϫ1 min Ϫ1 ) had a modest antihypertensive effect (Ϫ10.9 mm Hg on day 4) but no significant sustained effects on regional hemodynamics. Losartan caused a fall in blood pressure (maximum Ϫ29.2 mm Hg on day 4) that was associated with renal, mesenteric, and, to a lesser extent, hindquarters vasodilatation. The combination of losartan with either dose of candoxatrilat had no greater antihypertensive or vasodilator effects than losartan alone, with the exception of the increase in renal vascular conductance, which was greater with the combination of the drugs than with either drug alone (significant only in the lower dose study). Losartan combined with UK-489,329 showed a greater antihypertensive effect than losartan alone (Ϫ14.6 mm Hg greater on day 4), although the effects of the combination were not significantly greater than the sum of the effects of both agents administered separately. However, losartan combined with UK-489,329 caused increases in renal and hindquarters vascular conductance that were significantly greater with the combination than with either agent given alone. Thus, in conscious SHR, the renin-angiotensin system may act to oppose a vasodilator action of NEP inhibition, particularly in the renal vascular bed. Neutral endopeptidase 24.11 (NEP) is a zinc metalloprotease responsible for the breakdown of a number of short linear or cyclic peptides, such as the natriuretic peptides, bradykinin, angiotensin II, and endothelin. Other members of the zinc metalloprotease family that may be involved in the metabolism of biologically active peptides include endothelin-converting enzyme and soluble secreted endopeptidase (SEP) The development of "vasopeptidase" inhibitors, which simultaneously inhibit the two zinc metallopeptidases angiotensin-converting enzyme (ACE) and NEP, was based on the This study was supported by Pfizer Ltd. Article, publication date, and citation information can be found a

    Entanglement of atoms via cold controlled collisions

    Get PDF
    We show that by using cold controlled collisions between two atoms one can achieve conditional dynamics in moving trap potentials. We discuss implementing two qubit quantum--gates and efficient creation of highly entangled states of many atoms in optical lattices.Comment: 4 pages 3 figure

    Effects of noise on quantum error correction algorithms

    Full text link
    It has recently been shown that there are efficient algorithms for quantum computers to solve certain problems, such as prime factorization, which are intractable to date on classical computers. The chances for practical implementation, however, are limited by decoherence, in which the effect of an external environment causes random errors in the quantum calculation. To combat this problem, quantum error correction schemes have been proposed, in which a single quantum bit (qubit) is ``encoded'' as a state of some larger number of qubits, chosen to resist particular types of errors. Most such schemes are vulnerable, however, to errors in the encoding and decoding itself. We examine two such schemes, in which a single qubit is encoded in a state of nn qubits while subject to dephasing or to arbitrary isotropic noise. Using both analytical and numerical calculations, we argue that error correction remains beneficial in the presence of weak noise, and that there is an optimal time between error correction steps, determined by the strength of the interaction with the environment and the parameters set by the encoding.Comment: 26 pages, LaTeX, 4 PS figures embedded. Reprints available from the authors or http://eve.physics.ox.ac.uk/QChome.htm

    A position-momentum EPR state of distantly-separated trapped atoms

    Get PDF
    We propose a scheme for preparing an EPR state in position and momentum of a pair of distantly-separated trapped atoms. The scheme utilizes the entangled light fields output from a nondegenerate optical parametric amplifier. Quantum state exchange between these fields and the motional states of the trapped atoms is accomplished via interactions in cavity QED.Comment: 5 pages, 2 figures, submitted to Phys. Rev.

    Discovery and Characterization of a Caustic Crossing Microlensing Event in the SMC

    Full text link
    We present photometric observations and analysis of the second microlensing event detected towards the Small Magellanic Cloud (SMC), MACHO Alert 98-SMC-1. This event was detected early enough to allow intensive observation of the lightcurve. These observations revealed 98-SMC-1 to be the first caustic crossing, binary microlensing event towards the Magellanic Clouds to be discovered in progress. Frequent coverage of the evolving lightcurve allowed an accurate prediction for the date of the source crossing out of the lens caustic structure. The caustic crossing temporal width, along with the angular size of the source star, measures the proper motion of the lens with respect to the source, and thus allows an estimate of the location of the lens. Lenses located in the Galactic halo would have a velocity projected to the SMC of v^hat ~1500 km/s, while an SMC lens would typically have v^hat ~60 km/s. We have performed a joint fit to the MACHO/GMAN data presented here, including recent EROS data of this event. These joint data are sufficient to constrain the time for the lens to move an angle equal to the source angular radius; 0.116 +/- 0.010 days. We estimate a radius for the lensed source of 1.4 +/- 0.1 R_sun. This yields a projected velocity of v^hat = 84 +/- 9 km/s. Only 0.15% of halo lenses would be expected to have a v^hat value at least as small as this, while 31% of SMC lenses would be expected to have v^hat as large as this. This implies that the lensing system is more likely to reside in the SMC than in the Galactic halo.Comment: 16 pages, including 3 tables and 3 figures; submitted to The Astrophysical Journa

    Optimal quantum codes for preventing collective amplitude damping

    Get PDF
    Collective decoherence is possible if the departure between quantum bits is smaller than the effective wave length of the noise field. Collectivity in the decoherence helps us to devise more efficient quantum codes. We present a class of optimal quantum codes for preventing collective amplitude damping to a reservoir at zero temperature. It is shown that two qubits are enough to protect one bit quantum information, and approximately L+1/2log2((πL)/2)L+ 1/2 \log_2((\pi L)/2) qubits are enough to protect LL qubit information when LL is large. For preventing collective amplitude damping, these codes are much more efficient than the previously-discovered quantum error correcting or avoiding codes.Comment: 14 pages, Late

    Regional Hemodynamic Effects of Neutral Endopeptidase Inhibition and Angiotensin (AT 1

    Full text link
    corecore