36 research outputs found
Breaking arches with vibrations: the role of defects
We present experimental results about the stability of arches against
external vibrations. Two dimensional strings of mutually stabilizing grains are
geometrically analyzed and subsequently submitted to a periodic forcing at
fixed frequency and increasing amplitude. The main factor that determines the
granular arch resistance against vibrations is the maximum angle among those
formed between any particle of the arch and its two neighbors: the higher the
maximum angle is, the easier to break the arch. Based in an analysis of the
forces, a simple explanation is given for this dependence. From this,
interesting information can be extracted about the expected magnitudes of
normal forces and friction coefficients of the particles conforming the arches
Jamming during the discharge of granular matter from a silo
In this work we present an experimental study of the jamming that stops the
free flow of grains from a silo discharging by gravity. When the outlet size is
not much bigger than the beads, granular material jams the outlet of the
container due to the formation of an arch. Statistical data from the number of
grains fallen between consecutive jams are presented. The information that they
provide can help to understand the jamming phenomenon. As the ratio between the
size of the orifice and the size of the beads is increased, the probability
that an arch blocks the outlet decreases. We show here that there is a power
law divergence of the mean avalanche size for a finite critical radius. Beyond
this critical radius no jamming can occur and the flow is never stopped. The
dependence of the arch formation on the shape and the material of the grains
has been explored. It has been found that the material properties of the grains
do not affect the arch formation probability. On the contrary, the shape of the
grains deeply influences it. A simple model to interpret the results is also
discussed.Comment: Submitted to Phys. Rev.
The shape of jamming arches in two-dimensional deposits of granular materials
We present experimental results on the shape of arches that block the outlet
of a two dimensional silo. For a range of outlet sizes, we measure some
properties of the arches such as the number of particles involved, the span,
the aspect ratio, and the angles between mutually stabilizing particles. These
measurements shed light on the role of frictional tangential forces in arching.
In addition, we find that arches tend to adopt an aspect ratio (the quotient
between height and half the span) close to one, suggesting an isotropic load.
The comparison of the experimental results with data from numerical models of
the arches formed in the bulk of a granular column reveals the similarities of
both, as well as some limitations in the few existing models.Comment: 8 pages; submitted to Physical Review
Fluctuations of grains inside a discharging two-dimensional silo
We present experimental data corresponding to a two dimensional dense
granular flow, namely, the gravity-driven discharge of grains from a small
opening in a silo. We study the microscopic velocity field with the help of
particle tracking techniques. From these data, the velocity profiles can be
obtained and the validity of some long-standing approaches can be assessed.
Moreover, the fluctuations of the velocities are taken into consideration in
order to characterize the features of the advective motion (due to the gravity
force) and the diffusive motion, which shows nontrivial behaviour
Clogging transition of many-particle systems flowing through bottlenecks
When a large set of discrete bodies passes through a bottleneck, the flow may become intermittent due to the development of clogs that obstruct the constriction. Clogging is observed, for instance, in colloidal suspensions, granular materials and crowd swarming, where consequences may be dramatic. Despite its ubiquity, a general framework embracing research in such a wide variety of scenarios is still lacking. We show that in systems of very different nature and scale -including sheep herds, pedestrian crowds, assemblies of grains, and colloids- the probability distribution of time lapses between the passages of consecutive bodies exhibits a power-law tail with an exponent that depends on the system condition. Consequently, we identify the transition to clogging in terms of the divergence of the average time lapse. Such a unified description allows us to put forward a qualitative clogging state diagram whose most conspicuous feature is the presence of a length scale qualitatively related to the presence of a finite size orifice. This approach helps to understand paradoxical phenomena, such as the faster-is-slower effect predicted for pedestrians evacuating a room and might become a starting point for researchers working in a wide variety of situations where clogging represents a hindrance.Fil: Zuriguel, Iker. Universidad de Navarra; EspañaFil: Parisi, Daniel Ricardo. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hidalgo, Raúl Cruz. Universidad de Navarra; EspañaFil: Lozano, Celia. Universidad de Navarra; EspañaFil: Janda, Álvaro. University of Edinburgh; Reino UnidoFil: Gago, Paula Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional La Plata. Departamento de Ingeniería Mecánica; ArgentinaFil: Peralta, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional La Plata. Departamento de Ingeniería Mecánica; ArgentinaFil: Ferrer, Luis Miguel. Universidad de Zaragoza; EspañaFil: Pugnaloni, Luis Ariel. Universidad Tecnológica Nacional. Facultad Regional La Plata. Departamento de Ingeniería Mecánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Clément, Eric. Universite Pierre et Marie Curie; Francia. Université Paris Diderot - Paris 7; FranciaFil: Maza, Diego. Universidad de Navarra; EspañaFil: Pagonabarraga, Ignacio. Universidad de Barcelona; EspañaFil: Garcimartín, Angel. Universidad de Navarra; Españ