5 research outputs found

    Reversed-engineered human alveolar lung-on-a-chip model

    Get PDF
    Here, we present a physiologically relevant model of the human pulmonary alveoli. This alveolar lung-on-a-chip platform is composed of a three-dimensional porous hydrogel made of gelatin methacryloyl with an inverse opal structure, bonded to a compartmentalized polydimethylsiloxane chip. The inverse opal hydrogel structure features well-defined, interconnected pores with high similarity to human alveolar sacs. By populating the sacs with primary human alveolar epithelial cells, functional epithelial monolayers are readily formed. Cyclic strain is integrated into the device to allow biomimetic breathing events of the alveolar lung, which, in addition, makes it possible to investigate pathological effects such as those incurred by cigarette smoking and severe acute respiratory syndrome coronavirus 2 pseudoviral infection. Our study demonstrates a unique method for reconstitution of the functional human pulmonary alveoli in vitro, which is anticipated to pave the way for investigating relevant physiological and pathological events in the human distal lung

    Microfluidic bubble‐generator enables digital light processing 3D printing of porous structures

    No full text
    Abstract Three‐dimensional (3D) printing is an emerging technique that has shown promising success in engineering human tissues in recent years. Further development of vat‐photopolymerization printing modalities has significantly enhanced the complexity level for 3D printing of various functional structures and components. Similarly, the development of microfluidic chip systems is an emerging research sector with promising medical applications. This work demonstrates the coupling of a digital light processing (DLP) printing procedure with a microfluidic chip system to produce size‐tunable, 3D‐printable porosities with narrow pore size distributions within a gelatin methacryloyl (GelMA) hydrogel matrix. It is found that the generation of size‐tunable gas bubbles trapped within an aqueous GelMA hydrogel‐precursor can be controlled with high precision. Furthermore, the porosities are printed in two‐dimensional (2D) as well as in 3D using the DLP printer. In addition, the cytocompatibility of the printed porous scaffolds is investigated using fibroblasts, where high cell viabilities as well as cell proliferation, spreading, and migration are confirmed. It is anticipated that the strategy is widely applicable in a range of application areas such as tissue engineering and regenerative medicine, among others

    Light-based vat-polymerization bioprinting

    No full text
    Light-based vat-polymerization bioprinting enables computer-aided patterning of 3D cell-laden structures in a point-by-point, layer-by-layer or volumetric manner, using vat (vats) filled with photoactivatable bioresin (bioresins). This collection of technologies — divided by their modes of operation into stereolithography, digital light processing and volumetric additive manufacturing — has been extensively developed over the past few decades, leading to broad applications in biomedicine. In this Primer, we illustrate the methodology of light-based vat-polymerization 3D bioprinting from the perspectives of hardware, software and bioresin selections. We follow with discussions on methodological variations of these technologies, including their latest advancements, as well as elaborating on key assessments utilized towards ensuring qualities of the bioprinting procedures and products. We conclude by providing insights into future directions of light-based vat-polymerization methods.ISSN:2662-844

    Light-based vat-polymerization bioprinting

    No full text
    Light-based vat-polymerization bioprinting enables computer-aided patterning of 3D cell-laden structures in a point-by-point, layer-by-layer or volumetric manner, using vat (vats) filled with photoactivatable bioresin (bioresins). This collection of technologies — divided by their modes of operation into stereolithography, digital light processing and volumetric additive manufacturing — has been extensively developed over the past few decades, leading to broad applications in biomedicine. In this Primer, we illustrate the methodology of light-based vat-polymerization 3D bioprinting from the perspectives of hardware, software and bioresin selections. We follow with discussions on methodological variations of these technologies, including their latest advancements, as well as elaborating on key assessments utilized towards ensuring qualities of the bioprinting procedures and products. We conclude by providing insights into future directions of light-based vat-polymerization methods

    Volumetric additive manufacturing of pristine silk-based (bio)inks

    No full text
    Volumetric additive manufacturing of protein scaffolds has a wide range of possible biomedical applications. Here the authors report on the bioprinting of unmodified silk sericin and silk fibroin inks with shape-memory and tuneable mechanical properties and demonstrate the potential of the inks in different applications
    corecore