4,145 research outputs found
On the abundance discrepancy problem in HII regions
The origin of the abundance discrepancy is one of the key problems in the
physics of photoionized nebula. In this work, we analize and discuss data for a
sample of Galactic and extragalactic HII regions where this abundance
discrepancy has been determined. We find that the abundance discrepancy factor
(ADF) is fairly constant and of the order of 2 in all the available sample of
HII regions. This is a rather different behaviour than that observed in
planetary nebulae, where the ADF shows a much wider range of values. We do not
find correlations between the ADF and the O/H, O++/H+ ratios, the ionization
degree, Te(High), Te(Low)/ Te(High), FWHM, and the effective temperature of the
main ionizing stars within the observational uncertainties. These results
indicate that whatever mechanism is producing the abundance discrepancy in HII
regions it does not substantially depend on those nebular parameters. On the
contrary, the ADF seems to be slightly dependent on the excitation energy, a
fact that is consistent with the predictions of the classical temperature
fluctuations paradigm. Finally, we obtain that Te values obtained from OII
recombination lines in HII regions are in agreement with those obtained from
collisionally excited line ratios, a behaviour that is again different from
that observed in planetary nebulae. These similar temperature determinations
are in contradiction with the predictions of the model based on the presence of
chemically inhomogeneous clumps but are consistent with the temperature
fluctuations paradigm. We conclude that all the indications suggest that the
physical mechanism responsible of the abundance discrepancy in HII regions and
planetary nebulae are different.Comment: 14 pages, 8 figures, 9 tables. Accepted for publication in the Ap
Spontaneous mass generation and the small dimensions of the Standard Model gauge groups U(1), SU(2) and SU(3)
The gauge symmetry of the Standard Model is SU(3)_c x SU(2)_L x U(1)_Y for
unknown reasons. One aspect that can be addressed is the low dimensionality of
all its subgroups. Why not much larger groups like SU(7), or for that matter,
SP(38) or E7? We observe that fermions charged under large groups acquire much
bigger dynamical masses, all things being equal at a high e.g. GUT scale, than
ordinary quarks. Should such multicharged fermions exist, they are too heavy to
be observed today and have either decayed early on (if they couple to the rest
of the Standard Model) or become reliquial dark matter (if they don't). The
result follows from strong antiscreening of the running coupling for those
larger groups (with an appropriately small number of flavors) together with
scaling properties of the Dyson-Schwinger equation for the fermion mass.Comment: 15 pages, 17 plots. This version incorporates community as well as
referee comments. Accepted for publication in Nuclear Physics
The radial abundance gradient of oxygen towards the Galactic anticentre
We present deep optical spectroscopy of eight HII regions located in the
anticentre of the Milky Way. The spectra were obtained at the 10.4m GTC and
8.2m VLT. We determined Te([NII]) for all objects and Te([OIII]) for six of
them. We also included in our analysis an additional sample of 13 inner-disc
Galactic Hii regions from the literature that have excellent T_e
determinations. We adopted the same methodology and atomic dataset to determine
the physical conditions and ionic abundances for both samples. We also detected
the CII and OII optical recombination lines in Sh 2-100, which enables
determination of the abundance discrepancy factor for this object. We found
that the slopes of the radial oxygen gradients defined by the HII regions from
R_25 (= 11.5 kpc) to 17 kpc and those within R_25 are similar within the
uncertainties, indicating the absence of flattening in the radial oxygen
gradient in the outer Milky Way. In general, we found that the scatter of the
O/H ratios of Hii regions is not substantially larger than the observational
uncertainties. The largest possible local inhomogeneities of the oxygen
abundances are of the order of 0.1 dex. We also found positive radial gradients
in Te([O III]) and Te([N II]) across the Galactic disc. The shapes of these
temperature gradients are similar and also consistent with the absence of
flattening of the metallicity distribution in the outer Galactic disc.Comment: 20 pages, 11 figures. Accepted for publication in Monthly Notices of
the Royal Astronomical Societ
- …